[1] | Franks PW, Mccarthy MI . Exposing the exposures responsible for type 2 diabetes and obesity. Science, 2016,354(6308):69-73. [DOI] | [2] | Mello VDFD, Pulkkinen L, Lalli M, Kolehmainen M, Pihlajamaki J, Uusitupa M . DNA methylation in obesity and type 2 diabetes. Ann Med, 2014,46(3):103-113. [DOI] | [3] | Tang LL, Liu Q, Bu SZ, Xu LT, Wang QW, Mai YF, Duan SW . The effect of environmental factors and DNA methylation on type 2 diabetes mellitus. Hereditas (Beijing), 2013,35(10):1143-1152. | [3] | 汤琳琳, 刘琼, 步世忠, 徐雷艇, 王钦文, 麦一峰, 段世伟 . 2型糖尿病环境因素与DNA甲基化的研究进展. 遗传, 2013,35(10):1143-1152. [DOI] | [4] | Vague J . The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. The American Journal of Clinical Nutrition, 1956,4(1):20-34. [DOI] | [5] | Pi-Sunyer FX . The epidemiology of central fat distribution in relation to disease. Nutr Rev, 2004,62(s2):S120-S126. [DOI] | [6] | M?rin P, Andersson B, Ottosson M, Olbe L, Chowdhury B, Kvist H, Holm G, Sj?str?m L, Bj?rntorp P . The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism, 1992,41(11):1242-1248. [DOI] | [7] | Tatsukawa Y, Misumi M, Kim YM, Yamada M, Ohishi W, Fujiwara S, Nakanishi S, Yoneda M . Body composition and development of diabetes: a 15-year follow-up study in a Japanese population. Eur J Clin Nutr, 2018,72(3):374-380. [DOI] | [8] | Seale P, Kajimura S, Spiegelman BM . Transcriptional control of brown adipocyte development and physiological function—of mice and men. Genes Dev, 2009,23(7):788-797. [DOI] | [9] | Gastaldelli A, Gaggini M, Defronzo RA . Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the san antonio metabolism study. Diabetes, 2017,66(4):815-822. [DOI] | [10] | Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, Poulsen P, Ribel-Madsen R, Pedersen NL, Almgren P, Fadista J, R?nn T, Pedersen KB, Scheele C, Vaag A, Ling C . Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes, 2014,63(9):2962-2976. [DOI] | [11] | Guo S . Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol, 2014,220(2):T1-T23. [DOI] | [12] | Miki H, Yamauchi T, Suzuki R, Komeda K, Tsuchida A, Kubota N, Terauchi Y, Kamon J, Kaburagi Y, Matsui J, Akanuma Y, Nagai R, Kimura S, Tobe K, Kadowaki T . Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol Cell Biol, 2001,21(7):2521-2532. [DOI] | [13] | Orozco LD, Farrell C, Hale C, Rubbi L, Rinaldi A, Civelek M, Pan C, Lam L, Montoya D, Edillor C, Seldin M, Boehnke M, Mohlke KL, Jacobsen S, Kuusisto J, Laakso M, Lusis AJ, Pellegrini M . Epigenome-wide association in adipose tissue from the METSIM cohort. Hum Mol Genet, 2018,27(10):1830-1846. [DOI] | [14] | Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 2012,13(7):484-492. [DOI] | [15] | Yuan L, Luo X, Zeng M, Zhang Y, Yang M, Zhang L, Liu R, Boden G, Liu H, Ma ZA, Li L, Yang G . Transcription factor TIP27 regulates glucose homeostasis and insulin sensitivity in a PI3-kinase/Akt-dependent manner in mice. Int J Obes (Lond), 2015,39(6):949-958. [DOI] | [16] | Nagarajan A, Petersen MC, Nasiri AR, Butrico G, Fung A, Ruan HB, Kursawe R, Caprio S, Thibodeau J, Bourgeois- Daigneault MC, Sun L, Gao G, Bhanot S, Jurczak MJ, Green MR, Shulman GI, Wajapeyee N . MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nat Commun, 2016,7:12639. [DOI] | [17] | Kaminska D, Kuulasmaa T, Venesmaa S, K?kel? P, Vaittinen M, Pulkkinen L, P??kk?nen M, Gylling H, Laakso M, Pihlajam?ki J . Adipose tissue TCF7L2 splicing is regulated by weight loss and associates with glucose and fatty acid metabolism. Diabetes, 2012,61(11):2807-2813. [DOI] | [18] | Dayeh T, Tuomi T, Almgren P, Perfilyev A , Jansson PA,de Mello VD,Pihlajam?ki J,Vaag A,Groop L,Nilsson E,Ling C.DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics, 2016,11(7):482-488. [DOI] | [19] | Hardy LM, Frisdal E, Le Goff W . Critical role of the human ATP-binding cassette G1 transporter in cardiometabolic diseases. Int J Mol Sci, 2017,18(9):1892. [DOI] | [20] | Ribel-Madsen R, Fraga MF, Jacobsen S, Bork-Jensen J, Lara E, Calvanese V, Fernandez AF, Friedrichsen M, Vind BF, H?jlund K, Beck-Nielsen H, Esteller M, Vaag A, Poulsen P . Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One, 2012,7(12):e51302. [DOI] | [21] | Kaburagi T, Kizuka Y, Kitazume S, Taniguchi N . The inhibitory role of α2,6-sialylation in adipogenesis. J Biol Chem, 2017,292(6):2278-2286. [DOI] | [22] | Jones JR, Barrick C, Kim KA, Lindner J, Blondeau B, Fujimoto Y, Shiota M, Kesterson RA, Kahn BB, Magnuson M A . Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci USA, 2005,102(17):6207-6212. [DOI] | [23] | Fujiki K, Kano F, Shiota K, Murata M . Expression of the peroxisome proliferator activated receptor γ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol, 2009,7:38. [DOI] | [24] | Chavalit T, Rojvirat P, Muangsawat S, Jitrapakdee S . Hepatocyte nuclear factor 4αregulates the expression of the murine pyruvate carboxylase gene through the HNF4-specific binding motif in its proximal promoter. Biochim Biophys Acta, 2013,1829(10):987-999. [DOI] | [25] | Lynch CJ, Mccall KM, Billingsley ML, Bohlen LM, Hreniuk SP, Martin LF, Witters LA, Vannucci SJ . Pyruvate carboxylase in genetic obesity. Am J Physiol, 1992,262(5):E608-E618. [DOI] | [26] | Dutchak PA, Katafuchi T, Bookout AL, Choi JH, Yu RT, Mangelsdorf DJ, Kliewer SA . Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell, 2012,148(3):556-567. [DOI] | [27] | You D, Nilsson E, Tenen DE, Lyubetskaya A, Lo JC, Jiang R, Deng J, Dawes BA, Vaag A, Ling C, Rosen ED, Kang S . Dnmt3a is an epigenetic mediator of adipose insulin resistance. eLife, 2017,6:e30766. [DOI] | [28] | Pietil?inen KH, Ismail K, J?rvinen E, Heinonen S, Tummers M, Bollepalli S, Lyle R, Muniandy M, Moilanen E, Hakkarainen A, Lundbom J, Lundbom N, Rissanen A, Kaprio J, Ollikainen M . DNA methylation and gene expression patterns in adipose tissue differ significantly within young adult monozygotic BMI-discordant twin pairs. Int J Obes (Lond), 2016,40(4):654-661. [DOI] | [29] | Keller M, Hopp L, Liu X, Wohland T, Rohde K, Cancello R, Kl?s M, Bacos K, Kern M, Eichelmann F, Dietrich A, Sch?n MR, G?rtner D, Lohmann T, Dre?ler M, Stumvoll M, Kovacs P, Diblasio AM, Ling C, Binder H, Blüher M, B?ttcher Y . Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metab, 2017,6(1):86-100. [DOI] | [30] | Crujeiras AB, Diaz-Lagares A, Sandoval J, Milagro FI, Navas-Carretero S, Carreira MC, Gomez A, Hervas D, Monteiro MP, Casanueva FF, Esteller M, Martinez JA . DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome- wide analysis from non-obese and obese patients. Sci Rep, 2017,7:41903. [DOI] | [31] | Dahlman I, Sinha I, Gao H, Brodin D, Thorell A, Rydén M, Andersson DP, Henriksson J, Perfilyev A, Ling C, Dahlman-Wright K, Arner P . The fat cell epigenetic signature in post-obese womenischaracterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes (Lond), 2015,39(6):910-919. [DOI] | [32] | Cordero P, Campion J, Milagro FI, Goyenechea E, Steemburgo T, Javierre BM, Martinez JA . Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet. J Physiol Biochem, 2011,67(3):463-470. [DOI] | [33] | Rohde K, Kl?s M, Hopp L, Liu X, Keller M, Stumvoll M, Dietrich A, Sch?n MR, G?rtner D, Lohmann T, Dre?ler M, Kovacs P, Binder H, Blüher M, B?ttcher Y . IRS1 DNA promoter methylation and expression in human adipose tissue are related to fat distribution and metabolic traits. Sci Rep, 2017,7(1):12369. [DOI] | [34] | Sonne SB, Yadav R, Yin G, Dalgaard MD, Myrmel LS, Gupta R, Wang J, Madsen L, Kajimura S, Kristiansen K . Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression. Adipocyte, 2017,6(2):124-133. [DOI] | [35] | Cao W, Xu Y, Luo D, Saeed M, Sun C . Hoxa5 promotes adipose differentiation via increasing DNA methylation level and inhibiting PKA/HSL signal pathway in mice. Cellular Physiology and Biochemistry, 2018,45(3):1023-1033. [DOI] | [36] | Kleiman A, Keats EC, Chan NG, Khan ZA . Elevated IGF2 prevents leptin induction and terminal adipocyte differentiation in hemangioma stem cells. Exp Mol Pathol, 2013,94(1):126-136. [DOI] | [37] | Claycombe KJ, Uthus EO, Roemmich JN, Johnson LK, Johnson WT . Prenatal low-protein and postnatal high-fat diets induce rapid adipose tissue growth by inducing Igf2 expression in Sprague Dawley rat offspring. J Nutr, 2013,143(10):1533-1539. [DOI] | [38] | Ibrahim MM . Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev, 2010,11(1):11-18. [DOI] | [39] | Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB ,Overvad K ,van der Schouw YT ,Spencer E ,Moons KGM ,Tj?nneland A ,Halkjaer J ,Jensen MK ,Stegger J ,Clavel-Chapelon F ,Boutron-Ruault MC ,Chajes V ,Linseisen J ,Kaaks R ,Trichopoulou A ,Trichopoulos D ,Bamia C ,Sieri S ,Palli D ,Tumino R ,Vineis P ,Panico S ,Peeters PH ,May AM ,Bueno-De-Mesquita HB ,van Duijnhoven FJ ,Hallmans G ,Weinehall L ,Manjer J ,Hedblad B ,Lund E ,Agudo A ,Arriola L ,Barricarte A ,Navarro C ,Martinez C ,Quirós JR ,Key T ,Bingham S ,Khaw KT ,Boffetta P ,Jenab M ,Ferrari P ,Riboli E . General and abdominal adiposity and risk of death in Europe. N Engl J Med, 2008,359(20):2105-2120. [DOI] | [40] | Liu L, Feng J, Zhang G, Yuan X, Li F, Yang T, Hao S, Huang D, Hsue C, Lou Q . Visceral adipose tissue is more strongly associated with insulin resistance than subcutaneous adipose tissue in Chinese subjects with pre-diabetes. Curr Med Res Opin, 2018,34(1):123-129. [DOI] | [41] | Rodríguez-Rodero S, Menéndez-Torre E, Fernández-Bayón G, Morales-Sánchez P, Sanz L, Turienzo E, González JJ, Martinez-Faedo C, Suarez-Gutiérrez L, Ares J, Díaz-Naya L, Martin-Nieto A, Fernández-Morera JL, Fraga MF ,Delgado-álvarez E . Altered intragenic DNA methylation of HOOK2 gene in adipose tissue from individuals with obesity and type 2 diabetes. PLoS One, 2017,12(12):e0189153. [DOI] | [42] | Pallesi-Pocachard E, Bazellieres E, Viallat-Lieutaud A, Delgrossi MH, Barthelemy-Requin M, Le Bivic A, Massey- Harroche D . Hook2, a microtubule-binding protein, interacts with Par6α and controls centrosome orientation during polarized cell migration. Sci Rep, 2016,6:33259. [DOI] | [43] | Deng X, Yang Y, Sun H, Qi W, Duan Y, Qian Y . Analysis of whole genome-wide methylation and gene expression profiles in visceral omental adipose tissue of pregnancies with gestational diabetes mellitus. J Chin Med Assoc, 2018,81(7):623-630. [DOI] | [44] | Sekine Y, Tsuji S, Ikeda O, Sato N, Aoki N, Aoyama K, Sugiyama K, Matsuda T . Regulation of STAT3-mediated signaling by LMW-DSP2. Oncogene, 2006,25(42):5801-5806. [DOI] | [45] | Serrano-Marco L, Rodríguez-Calvo R, Kochairi IK, Palomer X, Michalik L, Wahli W, Vázquez-Carrera M . Activation of peroxisome proliferator-activated receptor-β/-δ (PPAR-β/-δ) ameliorates insulin signaling and reduces SOCS3 levels by inhibiting STAT3 in interleukin-6- stimulated adipocytes. Diabetes, 2011,60(7):1990-1999. [DOI] | [46] | Ramasamy S, Saez B, Mukhopadhyay S, Ding D, Ahmed AM, Chen X, Pucci F, Yamin R, Wang J, Pittet MJ, Kelleher CM, Scadden DT, Sweetser DA . Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway. Proc Natl Acad Sci USA, 2016,113(7):1871-1876. [DOI] | [47] | Choi MS, Kim YJ, Kwon EY, Ryoo JY, Kim SR, Jung UJ . High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling- and inflammation-related genes. Br J Nutr, 2015,113(6):867-877. [DOI] | [48] | Pinnick KE, Nicholson G, Manolopoulos KN, Mcquáid SE, Valet P, Frayn KN, Denton N, Min JL, Zondervan KT, Fleckner J, Mccarthy MI, Holmes CC, Karpe F . Distinct developmental profile of lower-body adipose tissue defines resistance against obesity-associated metabolic complications. Diabetes, 2014,63(11):3785-3797. [DOI] | [49] | Crujeiras AB, Diaz-Lagares A, Moreno-Navarrete JM, Sandoval J, Hervas D, Gomez A, Ricart W, Casanueva FF, Esteller M, Fernandez-Real JM . Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects. Transl Res, 2016,178:13-24. [DOI] | [50] | Bogner-Strauss JG, Prokesch A, Sanchez-Cabo F, Rieder D, Hackl H, Duszka K, Krogsdam A, Di Camillo B, Walenta E, Klatzer A, Lass A, Pinent M, Wong WC, Eisenhaber F, Trajanoski Z . Reconstruction of gene association network reveals a transmembrane protein required for adipogenesis and targeted by PPARγ. Cell Mol Life Sci, 2010,67(23):4049-4064. [DOI] | [51] | Ohgusu Y, Ohta KY, Ishii M, Katano T, Urano K, Watanabe J, Inoue K, Yuasa H . Functional characterization of human aquaporin 9 as a facilitative glycerol carrier. Drug Metab Pharmacokinet, 2008,23(4):279-284. [DOI] | [52] | Rodríguez A, Catalán V, Gómez-Ambrosi J, Frühbeck G . Aquaglyceroporins serve as metabolic gateways in adiposity and insulin resistance control. Cell Cycle, 2011,10(10):1548-1556. [DOI] | [53] | Liu XF, Bera TK, Kahue C, Escobar T, Fei Z, Raciti GA, Pastan I . ANKRD26 and its interacting partners TRIO, GPS2, HMMR and DIPA regulate adipogenesis in 3T3-L1 cells. PLoS One, 2012,7(5):e38130. [DOI] | [54] | Raciti GA, Spinelli R, Desiderio A, Longo M, Parrillo L, Nigro C ,D'Esposito V,Mirra P,Fiory F, Pilone V,Forestieri P,Formisano P,Pastan I,Miele C,Beguinot F. Specific CpG hyper-methylation leads to Ankrd26 gene down-regulation in white adipose tissue of a mouse model of diet-induced obesity. Sci Rep, 2017,7:43526. [DOI] | [55] | Castellano-Castillo D, Moreno-Indias I, Fernandez-Garcia JC, Clemente-Postigo M, Castro-Cabezas M, Tinahones FJ, Queipo-Ortu?o MI, Cardona F . Complement factor C3 methylation and mRNA expression is associated to BMI and insulin resistance in obesity. Genes (Basel), 2018,9(8):410. [DOI] | [56] | Kang S, Akerblad P, Kiviranta R, Gupta RK, Kajimura S, Griffin MJ, Min J, Baron R, Rosen ED . Regulation of early adipose commitment by Zfp521. PLoS Biol, 2012,10(11):e1001433. [DOI] | [57] | Lomba A, Martinez JA, Garcia-Diaz DF, Paternain L, Marti A, Campion J, Milagro FI . Weight gain induced by an isocaloric pair-fed high fat diet: a nutriepigenetic study on FASN and NDUFB6 gene promoters. Mol Genet Metab, 2010,101(2-3):273-278. [DOI] | [58] | Ishibashi J, Seale P . Beige can be slimming. Science, 2010,328(5982):1113-1114. [DOI] | [59] | Sambeat A, Gulyaeva O, Dempersmier J, Sul HS . Epigenetic regulation of the thermogenic adipose program. Trends Endocrinol Metab, 2017,28(1):19-31. [DOI] | [60] | Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, Kurokawa M, Won KJ, Seale P . Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab, 2014,19(4):593-604. [DOI] | [61] | Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM . Initiation of myoblast to brown fat switch by a PRDM16-C/EBPβ transcriptional complex. Nature, 2009,460(7259):1154-1158. [DOI] | [62] | Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument- Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM . PRDM16 controls a brown fat/skeletal muscle switch. Nature, 2008,454(7207):961-967. [DOI] | [63] | Yang Q, Liang X, Sun X, Zhang L, Fu X, Rogers CJ, Berim A, Zhang S, Wang S, Wang B, Foretz M, Viollet B, Gang DR, Rodgers BD, Zhu MJ, Du M . Ampk/α- ketoglutarate axis dynamically mediates DNA demethylation in the prdm16 promoter and brown adipogenesis. Cell Metab, 2016,24(4):542-554. [DOI] | [64] | Ma Y, Yang J, Wan Y, Peng Y, Ding S, Li Y, Xu B, Chen X, Xia W, Ke Y, Xu S . Low-level perfluorooctanoic acid enhances 3T3-L1 preadipocyte differentiation via altering peroxisome proliferator activated receptor gamma expression and its promoter DNA methylation. J Appl Toxicol, 2018,38(3):398-407. [DOI] | [65] | Clarke-Harris R, Wilkin TJ, Hosking J, Pinkney J, Jeffery AN, Metcalf BS, Godfrey KM, Voss LD, Lillycrop KA, Burdge GC . PGC1α promoter methylation in blood at 5-7 years predicts adiposity from 9 to 14 years (EarlyBird 50). Diabetes, 2014,63(7):2528-2537. [DOI] | [66] | Rui W, Jin Z, Zhe G, Song H . The methylation of C/EBP β gene promoter and regulated by GATA-2 protein. Mol Biol Rep, 2013,40(2):797-801. [DOI] | [67] | Shore A, Karamitri A, Kemp P, Speakman JR, Lomax MA . Role of Ucp1 enhancer methylation and chromatin remodelling in the control of Ucp1 expression in murine adipose tissue. Diabetologia, 2010,53(6):1164-1173. [DOI] | [68] | Huang YW, Luo J, Weng YI, Mutch DG, Goodfellow PJ, Miller DS, Huang TH . Promoter hypermethylation of CIDEA, HAAO and RXFP3 associated with microsatellite instability in endometrial carcinomas. Gynecol Oncol, 2010,117(2):239-247. [DOI] |
|