[1] | Franks PW, Mccarthy MI . Exposing the exposures responsible for type 2 diabetes and obesity. Science, 2016,354(6308):69-73. [DOI] | [2] | Mello VDFD, Pulkkinen L, Lalli M, Kolehmainen M, Pihlajamaki J, Uusitupa M . DNA methylation in obesity and type 2 diabetes. Ann Med, 2014,46(3):103-113. [DOI] | [3] | Tang LL, Liu Q, Bu SZ, Xu LT, Wang QW, Mai YF, Duan SW . The effect of environmental factors and DNA methylation on type 2 diabetes mellitus. Hereditas (Beijing), 2013,35(10):1143-1152. | [3] | 汤琳琳, 刘琼, 步世忠, 徐雷艇, 王钦文, 麦一峰, 段世伟 . 2型糖尿病环境因素与DNA甲基化的研究进展. 遗传, 2013,35(10):1143-1152. [DOI] | [4] | Vague J . The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. The American Journal of Clinical Nutrition, 1956,4(1):20-34. [DOI] | [5] | Pi-Sunyer FX . The epidemiology of central fat distribution in relation to disease. Nutr Rev, 2004,62(s2):S120-S126. [DOI] | [6] | M?rin P, Andersson B, Ottosson M, Olbe L, Chowdhury B, Kvist H, Holm G, Sj?str?m L, Bj?rntorp P . The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism, 1992,41(11):1242-1248. [DOI] | [7] | Tatsukawa Y, Misumi M, Kim YM, Yamada M, Ohishi W, Fujiwara S, Nakanishi S, Yoneda M . Body composition and development of diabetes: a 15-year follow-up study in a Japanese population. Eur J Clin Nutr, 2018,72(3):374-380. [DOI] | [8] | Seale P, Kajimura S, Spiegelman BM . Transcriptional control of brown adipocyte development and physiological function—of mice and men. Genes Dev, 2009,23(7):788-797. [DOI] | [9] | Gastaldelli A, Gaggini M, Defronzo RA . Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the san antonio metabolism study. Diabetes, 2017,66(4):815-822. [DOI] | [10] | Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, Poulsen P, Ribel-Madsen R, Pedersen NL, Almgren P, Fadista J, R?nn T, Pedersen KB, Scheele C, Vaag A, Ling C . Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes, 2014,63(9):2962-2976. [DOI] | [11] | Guo S . Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol, 2014,220(2):T1-T23. [DOI] | [12] | Miki H, Yamauchi T, Suzuki R, Komeda K, Tsuchida A, Kubota N, Terauchi Y, Kamon J, Kaburagi Y, Matsui J, Akanuma Y, Nagai R, Kimura S, Tobe K, Kadowaki T . Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol Cell Biol, 2001,21(7):2521-2532. [DOI] | [13] | Oro |
[1] |
王澜, 曾帆, 黄荣凤, 林树, 张志辉, 李旻典. 脂肪细胞Npy4r促进高脂饮食诱导肥胖[J]. 遗传, 2023, 45(2): 144-155. |
[2] |
许梦萱, 周明. 植物RNA聚合酶IV调控DNA甲基化和发育的研究进展[J]. 遗传, 2022, 44(7): 567-580. |
[3] |
杨慧杰, 李德, 白卉泠, 张铭, 黄俊, 袁小青. 一例ALMS1基因复合杂合突变所致的Alstrom综合征的诊疗和基因检测分析[J]. 遗传, 2022, 44(12): 1148-1157. |
[4] |
沈敏, 顾愹, 应长江, 张梅, 杨涛, 陈阳. 一例胰腺纤维钙化性糖尿病的诊疗和基因检测分析[J]. 遗传, 2022, 44(11): 1079-1086. |
[5] |
曾帆, 王澜, 万小勤, 黄荣凤, 张志辉, 李旻典. 瘦素基因启动的新型脂肪细胞表达Cre工具小鼠的构建[J]. 遗传, 2022, 44(10): 950-957. |
[6] |
叶静雅, 黄爱洁, 付真真, 龚颖芸, 杨洪远, 周红文. BSCL2基因复合杂合突变导致先天性全身性脂肪萎缩的分子机制研究[J]. 遗传, 2022, 44(10): 926-936. |
[7] |
吕承安, 王若然, 孟卓贤. 2型糖尿病进程中胰岛β细胞功能变化的分子机制[J]. 遗传, 2022, 44(10): 840-852. |
[8] |
张丽雯, 阮梅花, 刘加兰, 贺彩红, 于建荣. 糖尿病领域研发态势分析[J]. 遗传, 2022, 44(10): 824-839. |
[9] |
赵清雯, 潘东宁. 表观遗传修饰对脂肪组织产热的调控进展[J]. 遗传, 2022, 44(10): 867-880. |
[10] |
王雅楠, 徐涛, 王万鹏, 张庆祝, 解莉楠. 表观遗传修饰在作物重要性状形成中的作用[J]. 遗传, 2021, 43(9): 858-879. |
[11] |
曾之扬, 陆佳微, 曹希雅, 王芯悦, 李大力. 一种GLP-1过表达肠类器官构建的方法[J]. 遗传, 2021, 43(7): 694-703. |
[12] |
张向前, 李楠, 解新明. 表观遗传学综合性实验设计与探讨[J]. 遗传, 2021, 43(12): 1179-1187. |
[13] |
王芯悦, 李亮, 段秋慧, 李大力, 陈金联. Uhrf1对肠上皮发育的影响[J]. 遗传, 2021, 43(1): 84-93. |
[14] |
曹岚, 李志强, 师咏勇, 刘赟. 端粒长度与2型糖尿病:孟德尔随机化研究与多基因风险评分分析[J]. 遗传, 2020, 42(9): 882-888. |
[15] |
王玉琢, 张一鸣, 董晓莲, 王学才, 朱建福, 王娜, 江峰, 陈跃, 姜庆五, 付朝伟. 2型糖尿病易感基因SNP位点对生活方式干预降低血糖应答效果的修饰效应[J]. 遗传, 2020, 42(5): 483-492. |
|