遗传 ›› 2014, Vol. 36 ›› Issue (5): 456-468.doi: 10.3724/SP.J.1005.2014.0456
杨峰, 易凡, 曹慧青, 梁子才, 杜权
收稿日期:
2013-07-25
修回日期:
2013-09-30
出版日期:
2014-05-20
发布日期:
2014-05-25
通讯作者:
杜权, 博士, 研究员, 博士生导师, 研究方向:核酸及多肽技术。E-mail: quan.du@pku.edu.cn
E-mail:quan.du@pku.edu.cn
作者简介:
杨峰, 博士, 专业方向:长链非编码RNA的功能研究。Tel: 010-62750683; E-mail: feng_yang@pku.edu.cn
基金资助:
国家高技术研究发展计划项目(863计划项目)(编号2007AA02Z165)资助
Feng Yang, Fan Yi, Huiqing Cao, Zicai Liang, Quan Du
Received:
2013-07-25
Revised:
2013-09-30
Online:
2014-05-20
Published:
2014-05-25
摘要:
基因组计划研究表明, 在组成人类基因组的30亿个碱基对中, 仅有1.5%的核酸序列用于蛋白质编码, 其余98.5%的基因组为非蛋白质编码序列。这些序列曾被认为是在进化过程中累积的“垃圾序列”而未予以关注, 但在随后启动的ENCODE研究计划中却发现, 75%的基因组序列能够被转录成RNA, 其中近74%的转录产物为非编码RNA(Non-coding RNA, ncRNA)。在非编码RNA中, 绝大多数转录本的长度大于200个碱基, 这些“长链非编码RNA(Long non-coding RNA, lncRNA)”能够在转录及转录后水平上调节蛋白编码基因的表达, 从而广泛地参与包括细胞分化、个体发育在内的重要生命过程, 其异常表达还与多种人类重大疾病的发生密切相关。文章综述了长链非编码RNA的发现、分类、表达、作用机制以及其在个体发育和人类疾病中的作用。
杨峰, 易凡, 曹慧青, 梁子才, 杜权. 长链非编码RNA研究进展[J]. 遗传, 2014, 36(5): 456-468.
Feng Yang, Fan Yi, Huiqing Cao, Zicai Liang, Quan Du. The emerging landscape of long non-coding RNAs[J]. HEREDITAS(Beijing), 2014, 36(5): 456-468.
[1] Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 1961, 3(3): 318–356. <\p> [2] Balakirev ES, Ayala FJ. Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet, 2003, 37: 123–151. <\p> [3] Zhang RK, Zhang L, Yu WQ. Genome-wide expression of non-coding RNA and global chromatin modification. Acta Biochim Biophys Sin, 2012, 44(1): 40–47. <\p> [4] Muers M. RNA: Genome-wide views of long non-coding RNAs. Nat Rev Genet, 2011, 12(11): 742–743. <\p> [5] Hertel J, de Jong D, Marz M, Rose D, Tafer H, Tanzer A, Schierwater B, Stadler PF. Non-coding RNA annotation of the genome of Trichoplax adhaerens. Nucleic Acids Res, 2009, 37(5): 1602–1615. <\p> [6] Yang F, Yi F, Zheng ZG, Ling ZQ, Ding JN, Guo JF Mao WM, Wang XB, Ding XX, Liang ZF, Du Q. Characterization of a carcinogenesis-associated long non-coding RNA. RNA Biol, 2012, 9(1): 110–116. <\p> [7] Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A. Structure of a ribonucleic acid. Science, 1965, 147(3664): 1462–1465. <\p> [8] Bachellerie JP, Cavaillé J, Hüttenhofer A. The expanding snoRNA world. Biochimie, 2002, 84(8): 775–790. <\p> [9] Van Stijn T, Galloway S. A BamHI polymorphism at the ovine inactive X-specific transcript locus (XIST). Anim Genet, 1995, 26(4): 279–280. <\p> [10] Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell, 1992, 71(3): 515–526. <\p> [11] Okazaki Y, Furuno M, Kasukawa T. Analysis of the mouse transcriptome based on functional annotation of 60, 770 full-length cDNAs. Nature, 2002, 420(6915): 563–573. <\p> [12] Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007, 129(7): 1311–1323. <\p> [13] Mattick JS. The genetic signatures of noncoding RNAs. PLoS Genet, 2009, 5(4): e1000459. <\p> [14] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4): 629–641. <\p> [15] Koslowsky DJ, Bhat GJ, Read LK, Stuart K. Cycles of progressive realignment of gRNA with mRNA in RNA editing. Cell, 1991, 67(3): 537–546. <\p> [16] Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res, 2012, 40(14): 6391–6400. <\p> [17] Inagaki S, Numata K, Kondo T, Tomita M, Yasuda K, Kanai A, Kageyama Y. Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes Cells, 2005, 10(12): 1163–1173. <\p> [18] Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, Fukuda S, Ru K, Frith MC, Gongora MM, Grimmond SM, Hume DA, Hayashizaki Y, Mattick JS. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res, 2006, 16(1): 11–19. <\p> [19] Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA, 2008, 105(2): 716– 721. <\p> [20] Zhang XQ, Lian Z, Padden C, Gerstein MB, Rozowsky J, Snyder M, Gingeras TR, Kapranov P, Weissman SM, Newburger PE. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood, 2009, 113(11): 2526–2534. <\p> [21] Coudert AE, Pibouin L, Vi-Fane B, Thomas BL, Macdougall M, Choudhury A, Robert B, Sharpe PT, Berdal A, Lezot F. Expression and regulation of the Msx1 natural antisense transcript during development. Nucleic Acids Res, 2005, 33(16): 5208–5218. <\p> [22] Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 2010, 39(6): 925–938. <\p> [23] Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2): 358–369. <\p> [24] Rackham O, Shearwood AM, Mercer TR, Davies SM, Mattick JS, Filipovska A. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA, 2011, 17(12): 2085– 2093. <\p> [25] Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet, 2006, 22(1): 1–5. <\p> [26] Braidotti G, Baubec T, Pauler F, Seidl C, Smrzka O, Stricker S, Yotova I, Barlow DP. The Air noncoding RNA: an imprinted cis-silencing transcript. Cold Spring Harb Symp Quant Biol, 2004, 69: 55–66. <\p> [27] Pauler FM, Stricker SH, Warczok KE, Barlow DP. Long-range DNase I hypersensitivity mapping reveals the imprinted Igf2r and Air promoters share cis-regulatory elements. Genome Res, 2005, 15(10): 1379–1387. <\p> [28] Deng XX, Meller VH. Non-coding RNA in fly dosage compensation. Trends Biochem Sci, 2006, 31(9): 526–532. <\p> [29] Carninci P, Kasukawa T, Katayama S, Gough J. The transcriptional landscape of the mammalian genome. Science, 2005, 309(5740): 1559–1563. <\p> [30] Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao XK, Booth CJ, Wu J, Zhang CL, Spector DL. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep, 2012, 2(1): 111–123. <\p> [31] Nakagawa S, Ip JY, Shioi G, Tripathi V, Zong X, Hirose T, Prasanth KV. Malat1 is not an essential component of nuclear speckles in mice. RNA, 2012, 18(8): 1487–1499. <\p> [32] Souquere S, Beauclair G, Harper F, Fox A, Pierron G. Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell, 2010, 21(22): 4020–4027. <\p> [33] Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell, 2009, 33(6): 717–726. <\p> [34] Schorderet P, Duboule D. Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet, 2011, 7(5): e1002071. <\p> [35] Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235): 223–227. <\p> [36] Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell, 2011, 43(6): 904–914. <\p> [37] Pontier DB, Gribnau J. Xist regulation and function explored. Hum Genet, 2011, 130(2): 223–236. <\p> [38] Hung T, Wang YL, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Kong B, Langerød A, Børresen-Dale AL, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet, 2011, 43(7): 621–629. <\p> [39] Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation- associated repressor of the glucocorticoid receptor. Sci Signal, 2010, 3(107): ra8. <\p> [40] Poliseno L, Salmena L, Zhang JW, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010, 465(7301): 1033–1038. <\p> [41] Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011, 146(3): 353–358. <\p> [42] Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol, 2010, 7(5): 582–585. <\p> [43] Bonasio R, Tu SJ, Reinberg D. Molecular signals of epigenetic states. Science, 2010, 330(6004): 612–616. <\p> [44] Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang YL, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291): 1071–1076. <\p> [45] Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142(3): 409–419. <\p> [46] Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science, 2011, 331(6013): 76–79. <\p> [47] Spitale RC, Tsai MC, Chang HY. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics, 2011, 6(5): 539–543. <\p> [48] Good MC, Zalatan JG, Lim WA. Scaffold proteins: hubs for controlling the flow of cellular information. Science, 2011, 332(6030): 680–686. <\p> [49] Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992): 689–693. <\p> [50] Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15 INK4Btumor suppressor gene. Oncogene, 2011, 30(16): 1956–1962. <\p> [51] Yap KL, Li SD, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell, 2010, 38(5): 662–674. <\p> [52] Manak JR, Dike S, Sementchenko V, Kapranov P, Biemar F, Long J, Cheng J, Bell I, Ghosh S, Piccolboni A, Gingeras TR. Biological function of unannotated transcription during the early development of Drosophila melanogaster. Nat Genet, 2006, 38(10): 1151–1158. <\p> [53] Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg MF, Rifkin SA, Hua SJ, Herreman T, Tongprasit W, Barbano PE, Bussemaker HJ, White KP. A gene expression map for the euchromatic genome of Drosophila melanogaster. Science, 2004, 306(5696): 655–660. <\p> [54] Tupy JL, Bailey AM, Dailey G, Evans-Holm M, Siebel CW, Misra S, Celniker SE, Rubin GM. Identification of putative noncoding polyadenylated transcripts in Drosophila melanogaster. Proc Natl Acad Sci USA, 2005, 102(15): 5495–5500. <\p> [55] Angeleska A, Jonoska N, Saito M, Landweber LF. RNA- guided DNA assembly. J Theor Biol, 2007, 248(4): 706– 720. <\p> [56] Nowacki M, Vijayan V, Zhou Y, Schotanus K, Doak TG, Landweber LF. RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature, 2008, 451(7175): 153–158. <\p> [57] Sasaki YT, Sano M, Ideue T, Kin T, Asai K, Hirose T. Identification and characterization of human non-coding RNAs with tissue-specific expression. Biochem Biophys Res Commun, 2007, 357(4): 991–996. <\p> [58] Cao XW, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci, 2006, 29(1): 77–103. <\p> [59] Kosik KS. The neuronal microRNA system. Nat Rev Neurosci, 2006, 7(12): 911–920. <\p> [60] Mehler MF, Mattick JS. Non-coding RNAs in the nervous system. J Physiol, 2006, 575(Pt 2): 333–341. <\p> [61] Satterlee JS, Barbee S, Jin P, Krichevsky A, Salama S, Schratt G, Wu DY. Noncoding RNAs in the brain. J Neurosci, 2007, 27(44): 11856–11859. <\p> [62] Siddiqui AS, Khattra J. A mouse atlas of gene expression: large-scale digital gene- expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. Proc Natl Acad Sci USA, 2005, 102(51): 18485–18490. <\p> [63] Feng JC, Bi CM, Clark BS, Mady R, Shah P, Kohtz JD. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev, 2006, 20(11): 1470–1484. <\p> [64] Kohtz JD, Fishell G. Developmental regulation of EVF-1, a novel non-coding RNA transcribed upstream of the mouse Dlx6 gene. Gene Expr Patterns, 2004, 4(4): 407–412. <\p> [65] Liu JK, Ghattas I, Liu SY, Chen S, Rubenstein JL. Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation. Dev Dyn, 1997, 210(4): 498–512. <\p> [66] Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics, 2007, 90(3): 397–406. <\p> [67] Young TL, Matsuda T, Cepko CL. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol, 2005, 15(6): 501–512. <\p> [68] Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet, 2008, 9(2): 129–140. <\p> [69] Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru KL, Solda G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res, 2008, 18(9): 1433–1445. <\p> [70] Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang XP, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011, 477(7364): 295–300. <\p> [71] Yang LQ, Lin CR, Rosenfeld MG. A lincRNA switch for embryonic stem cell fate. Cell Res, 2011, 21(12): 1646– 1648. <\p> [72] Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li FG, Eilertson KE, Ding HM, Wylie JN, Pico AR, Capra JA, Erwin G, Kattman SJ, Keller GM, Srivastava D, Levine SS, Pollard KS, Holloway AK, Boyer LA, Bruneau BG. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell, 2012, 151(1): 206–220. <\p> [73] Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 2013, 152(3): 570–583. <\p> [74] Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GXY, Aiyer S, Raj A, Rinn JL, Chang HY, Khavari PA. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 2013, 493(7431): 231–235. <\p> [75] Hu WQ, Yuan BB, Flygare J, Lodish HF. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev, 2011, 25(24): 2573– 2578. <\p> [76] Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J, 2012, 31(3): 522–533. <\p> [77] Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG, Yuan BB, Kellis M, Lodish HF, Rinn JL. Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA, 2013, 110(9): 3387–3392. <\p> [78] Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S, Manos PD, Datta S, Lander ES, Schlaeger TM, Daley GQ, Rinn JL. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet, 2010, 42(12): 1113–1117. <\p> [79] Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G, 3rd, Kenny PJ, Wahlestedt C. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nat Med, 2008, 14(7): 723–730. <\p> [80] Ahmed W, Ali IS, Riaz M, Younas A, Sadeque A, Niazi AK, Niazi SH, Ali SH, Azam M, Qamar R. Association of ANRIL polymorphism (rs1333049: C>G) with myocardial infarction and its pharmacogenomic role in hypercholesterolemia. Gene, 2013, 515(2): 416–420. <\p> [81] Mussotter T, Kluwe L, Högel J, Nguyen R, Cooper DN, Mautner VF, Kehrer-Sawatzki H. Non-coding RNA ANRIL and the number of plexiform neurofibromas in patients with NF1 microdeletions. BMC Med Genet, 2012, 13: 98. <\p> [82] Zhuang JH, Peng WH, Li HL, Wang W, Wei YD, Li WM, Xu YW. Methylation of p15INK4b and expression of ANRIL on chromosome 9p21 are associated with coronary artery disease. PLoS ONE, 2012, 7(10): e47193. <\p> [83] Foroud T, Koller DL, Lai DB, Sauerbeck L, Anderson C, Ko N, Deka R, Mosley TH, Fornage M, Woo D, Moomaw CJ, Hornung R, Huston J, Meissner I, Bailey-Wilson JE, Langefeld C, Rouleau G, Connolly ES, Worrall BB, Kleindorfer D, Flaherty ML, Martini S, Mackey J, De Los Rios La Rosa F, Brown RD Jr, Broderick JP. Genome-wide association study of intracranial aneurysms confirms role of Anril and SOX17 in disease risk. Stroke, 2012, 43(11): 2846–2852. <\p> [84] Dereure O. Role of non-coding RNA ANRIL in the genesis of plexiform neurofibromas in neurofibromatosis type 1. Ann Dermatol Vénéréol, 2012, 139(5): 421–422. <\p> [85] Congrains A, Kamide K, Katsuya T, Yasuda O, Oguro R, Yamamoto K, Ohishi M, Rakugi H. CVD-associated non- coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem Biophys Res Commun, 2012, 419(4): 612–616. <\p> [86] Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, Kawai T, Kusunoki H, Yamamoto H, Takeya Y, Yamamoto K, Onishi M, Sugimoto K, Katsuya T, Awata N, Ikebe K, Gondo Y, Oike Y, Ohishi M, Rakugi H. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis, 2012, 220(2): 449–455. <\p> [87] Zhang WL, Chen Y, Liu P, Chen JZ, Song L, Tang Y, Wang YY, Liu JB, Hu FB, Hui RT. Variants on chromosome 9p21.3 correlated with ANRIL expression contribute to stroke risk and recurrence in a large prospective stroke population. Stroke, 2012, 43(1): 14–21. <\p> [88] Pasmant E, Sabbagh A, Vidaud M, Bièche I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J, 2011, 25(2): 444–448. <\p> [89] Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet, 2010, 6(4): e1000899. <\p> [90] Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, Clarke R, Collins R, Franzosi MG, Tognoni G, Seedorf U, Rust S, Eriksson P, Hamsten A, Farrall M, Watkins H. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet, 2008, 17(6): 806–814. <\p> [91] Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I. Characterization of a germ-line deletion, includeing the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res, 2007, 67(8): 3963–3969. <\p> [92] Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer, 2011, 10(1): 38. <\p> [93] Kim NH, Lee CH, Lee AY. H19 RNA downregulation stimulated melanogenesis in melasma. Pigment Cell Melanoma Res, 2010, 23(1): 84–92. <\p> [94] Tsang WP, Ng EK, Ng SS, Jin HC, Yu J, Sung JJ, Kwok TT. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis, 2010, 31(3): 350–358. <\p> [95] Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forne T, Jammes H, Ainscough JF, Surani MA, Journot L, Dandolo L. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development, 2009, 136(20): 3413–3421. <\p> [96] Esquiliano DR, Guo WH, Liang L, Dikkes P, Lopez MF. Placental glycogen stores are increased in mice with H19 null mutations but not in those with insulin or IGF type 1 receptor mutations. Placenta, 2009, 30(8): 693–699. <\p> [97] Wan Y, Chang HY. HOTAIR: Flight of noncoding RNAs in cancer metastasis. Cell Cycle, 2010, 9(17): 3391–3392. <\p> [98] Tano K, Mizuno R, Okada T, Rakwal R, Shibato J, Masuo Y, Ijiri K, Akimitsu N. MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett, 2010, 584(22): 4575–4580. <\p> [99] Koshimizu TA, Fujiwara Y, Sakai N, Shibata K, Tsuchiya H. Oxytocin stimulates expression of a noncoding RNA tumor marker in a human neuroblastoma cell line. Life Sci, 2010, 86(11-12): 455–460. <\p> [100] Guffanti A, Iacono M, Pelucchi P, Kim N, Solda G, Croft LJ, Taft RJ, Rizzi E, Askarian-Amiri M, Bonnal RJ, Callari M, Mignone F, Pesole G, Bertalot G, Bernardi LR, Albertini A, Lee C, Mattick JS, Zucchi I, De Bellis G. A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics, 2009, 10: 163. <\p> [101] Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene, 2007, 26(6): 851–858. <\p> [102] Ji P, Diederichs S, Wang WB, Böing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, Müller-Tidow C. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003, 22(39): 8031–8041. <\p> [103] Tseng JJ, Hsieh YT, Hsu SL, Chou MM. Metastasis associated lung adenocarcinoma transcript 1 is up-regulated in placenta previa increta/percreta and strongly associated with trophoblast-like cell invasion in vitro. Mol Hum Reprod, 2009, 15(11): 725–731. <\p> [104] Djebali S, Davis CA, Merkel A. Landscape of transcription in human cells. Nature, 2012, 489(7414): 101–108. <\p> [105] Rosenbloom KR, Dreszer TR, Long JC, Malladi VS, Sloan CA, Raney BJ, Cline MS, Karolchik D, Barber GP, Clawson H, Diekhans M, Fujita PA, Goldman M, Gravell RC, Harte RA, Hinrichs AS, Kirkup VM, Kuhn RM, Learned K, Maddren M, Meyer LR, Pohl A, Rhead B, Wong MC, Zweig AS, Haussler D, Kent WJ. ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res, 2012, 40(D1): D912–D917. <\p> [106] ENCODE Project Consortium, Myers RM, Stamatoyannopoulos J. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol, 2011, 9(4): e1001046. <\p> [107] Raney BJ, Cline MS, Rosenbloom KR, Dreszer TR, Learned K, Barber GP, Meyer LR, Sloan CA, Malladi VS, Roskin KM, Suh BB, Hinrichs AS, Clawson H, Zweig AS, Kirkup V, Fujita PA, Rhead B, Smith KE, Pohl A, Kuhn RM, Karolchik D, Haussler D, Kent WJ. ENCODE whole-genome data in the UCSC genome browser (2011 update). Nucleic Acids Res, 2011, 39(Suppl. 1): D871– D875. <\p> [108] Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E. Genome-wide measurement of RNA secondary structure in yeast. Nature, 2010, 467(7311): 103–107.<\p> |
[1] | 禹奇超,宋彬,邹轩轩,王岭,刘德权,李波,马昆. 乳腺癌癌旁组织特异性表达基因分析[J]. 遗传, 2019, 41(7): 625-633. |
[2] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[3] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[4] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉. 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子[J]. 遗传, 2018, 40(7): 525-533. |
[5] | 丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[6] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[7] | 李迎侠, 张婷婷, 马磊. 天然嵌合基因的结构特性及其对基因设计的启示[J]. 遗传, 2018, 40(2): 135-144. |
[8] | 徐宗昌,孔英珍. 普通烟草CESA基因家族成员的鉴定、亚细胞定位及表达分析[J]. 遗传, 2017, 39(6): 512-524. |
[9] | 施剑,李艳明,方向东. 长链非编码RNA通过细胞核高级结构调控真核基因表达及其临床意义[J]. 遗传, 2017, 39(3): 189-199. |
[10] | 魏凯,马磊. 高通量测序时代下持家基因定义的发展[J]. 遗传, 2017, 39(2): 127-134. |
[11] | 许璟瑾, 张文娟, 王静怡, 姚丽云, 潘裕添, 欧一新, 薛钰, . 金线莲抑制斑马鱼黑色素形成的活性组分筛选及机理研究[J]. 遗传, 2017, 39(12): 1178-1187. |
[12] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[13] | 崔婷婷, 邢天宇, 褚衍凯, 李辉, 王宁. PPARγ在脂肪生成中的遗传和表观遗传调控[J]. 遗传, 2017, 39(11): 1066-1077. |
[14] | 向小华, 吴新儒, 晁江涛, 杨明磊, 杨帆, 陈果, 刘贯山, 王元英. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传, 2016, 38(9): 840-856. |
[15] | 翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: