[1]Riese M, Höhmann S, Saedler H, Münster T, Huijser P. Comparative analysis of the SBP-box gene families in P. patens and seed plants. Gene, 2007, 401(1-2): 28-37.
[2]Chen XB, Zhang ZL, Liu DM, Zhang K, Li AL, Mao L. SQUAMOSA Promoter-Binding Protein-Like Transcri-ption Factors: Star Players for Plant Growth and Development. J Integr Plant Biol, 2010, 52(11): 946-951.
[3]许振华, 谢传晓. 植物microRNA与逆境响应研究进展. 遗传, 2010, 32(10): 1018-1030.
[4]Huijser P, Schmid M. The control of developmental phase transitions in plants. Development, 2011, 138(19): 4117-4129.
[5]Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 2009, 138(4): 750-759.
[6]Klein J, Saedler H, Huijser P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet, 1996, 250(1): 7-16.
[7]Guo AY, Zhu QH, Gu XC, Ge S, Yang J, Luo JC. Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene, 2008, 418(1-2): 1-8.
[8]Hultquist JF, Dorweiler JE. Feminized tassels of maize mop1 and ts1 mutants exhibit altered levels of miR156 and specific SBP-box genes. Planta, 2008, 229(1): 99-113.
[9]Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44(8): 950-954.
[10]Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42(6): 541-544.
[11]Chang JZ, Zhang JN, Mao XG, Li A, Jia JZ, Jing RL. Polymorphism of TaSAP1-A1 and its association with agronomic traits in wheat. Planta, 2013, 237(6): 1495-1508.
[12]Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003, 31(13): 3406-3415.
[13]Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The vienna RNA websuite. Nucleic Acids Res, 2008, 36(S2): W70-W74.
[14]Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res, 2011, 39(S2): W155-W159.
[15]Zhang B, Liu X, Zhao GY, Mao XG, Li A, Jing RL. Molecular characterization and expression analysis of Triticum aestivum SBP-box genes involved in ear development. J Integr Plant Biol, 2013, DOI: 10. 1111/jipb. 12153
[16]Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res, 2012, 40(D1): D302-D305.
[17]Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings Bioinf, 2008, 9(4): 299-306.
[18]Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.
[19]吕德康, 葛瑛, 柏锡, 李勇, 朱延明. 生物信息学在植物miRNA 研究中的应用. 生物信息学, 2009, 7(2): 113-116, 136.
[20]Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136(4): 669-687.
[21]Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell, 2010, 22(7): 2322-2335.
[22]Reyes JL, Chua NH. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J, 2007, 49(4): 592-606.
[23]Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S, Adhikari S, Arunachalam SP, Yu O, Subramanian S. Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiol, 2013, 162(4): 2042-2055.
[24]Mallory AC, Dugas DV, Bartel DP, Bartel B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol, 2004, 14(12): 1035-1046.
[25]Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303(5666): 2022-2225.
[26]Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell, 2002, 110(4): 513-520.
[27]Lännenpää M, Jänönen I, Hölttä-Vuori M, Gardemeister M, Porali I, Sopanen T. A new SBP-box gene BpSPL1 in silver birch (Betula pendula L.). Physiol Plant, 2004, 120(3): 491-500.
[28]Cardon GH, Höhmann S, Nettesheim K, Saedler H, Huijser P. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J, 1997, 12(2): 367-377.
[29]Stone JM, Liang X, Nekl ER, Stiers JJ. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J, 2005, 41(5): 744-754.
[30]Xing S, Salinas M, Höhmann S, Berndtgen R, Huijser P. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell, 2010, 22(12): 3935-3950.
[31]Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol, 2006, 142(1): 280-293.
[32]Adams KL, Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol, 2005, 8(2): 135-141.
[33]Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol, 2008, 67(1): 183-195. |