[1] | Vierstra RD. The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiol, 2012, 160( 6): 2-14. | [2] | Vierstra RD. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci, 2003, 8( 3): 135-142. | [3] | Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004, 55: 555-590. | [4] | Lopez-Molina L, Mongrand S, Chua NH. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA, 2001, 98( 8): 4782-4787. | [5] | Isono E, Nagel MK. Deubiquitylating enzymes and their emerging role in plant biology. Front Plant Sci, 2014, 5: 56. | [6] | Qiu JZ, Sheedlo MJ, Yu KW, Tan YH, Nakayasu ES, Das C, Liu XY, Luo ZQ. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature, 2016, 533( 7601): 120-124. | [7] | Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol, 2009, 10( 6): 385-397. | [8] | Yan N, Doelling JH, Falbel TG, Durski AM, Vierstra RD. The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. Plant Physiol, 2000, 124( 4): 1828-1843. | [9] | Hua ZH, Vierstra RD. The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol, 2011, 62: 299-334. | [10] | Michelle C, Vourc'h P, Mignon L, Andres CR. What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J Mol Evol, 2009, 68( 6): 616-628. | [11] | Callis J. The ubiquitination machinery of the ubiquitin system. Arabidopsis Book, 2014, 12: e0174. | [12] | Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F. Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sci, 2001, 6( 10): 463-470. | [13] | Komander D, Rape M. The ubiquitin code. Annu Rev Biochem, 2012, 81( 1): 203-229. | [14] | Hatfield PM, Gosink MM, Carpenter TB, Vierstra RD. The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J, 1997, 11( 2): 213-226. | [15] | Jin JP, Li X, Gygi SP, Harper JW. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature, 2007, 447( 7148): 1135-1138. | [16] | Kraft E, Stone SL, Ma L, Su N, Gao Y, Lau OS, Deng XW, Callis J. Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination e |
[1] |
闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087. |
[2] |
毛卓卓, 宫宇, 史贵霞, 李亚丽, 喻德跃, 黄方. 大豆E2泛素结合酶基因GmUBC1的克隆及在拟南芥中的异源表达[J]. 遗传, 2020, 42(8): 788-798. |
[3] |
刘莉莉, 郭爱伟, 李青青, 吴培福, 杨亚晋, 陈粉粉, 李素华, 郭盘江, 张勤. 泛素化途径在奶牛乳脂生成过程中的调控作用[J]. 遗传, 2020, 42(6): 548-555. |
[4] |
张卿义, 张樱子, 沈凯, 张舒羽, 曹建平. 组蛋白泛素化修饰及其在DNA损伤应答中的作用[J]. 遗传, 2019, 41(1): 29-40. |
[5] |
董莲花, 冉茂良, 李智, 彭馥芝, 陈斌. 泛素-蛋白酶体途径在精子生成中的作用[J]. 遗传, 2016, 38(9): 791-800. |
[6] |
何珊, 张令强. 线性泛素化修饰研究进展[J]. 遗传, 2015, 37(9): 911-917. |
[7] |
卢亮,李栋,贺福初. 蛋白质泛素化修饰的生物信息学研究进展[J]. 遗传, 2013, 35(1): 17-26. |
[8] |
陈科,程汉华,周荣家. 自噬与泛素化蛋白降解途径的分子机制及其功能[J]. 遗传, 2012, 34(1): 5-18. |
[9] |
侯玉婷,李晋南,任桂萍,刘铭瑶,孙国鹏,王文飞,李德山. 人FGF-21基因的克隆、表达及其调节脂肪细胞糖代谢的活性[J]. 遗传, 2010, 32(6): 583-587. |
[10] |
聂晶,春艳,令强 . 泛素蛋白连接酶MDM2活性及稳定性调控的研究进展[J]. 遗传, 2009, 31(10): 993-998. |
[11] |
李艳凤,张强,朱大海. 泛素介导的蛋白质降解与肿瘤发生[J]. 遗传, 2006, 28(12): 1591-1591~1596. |
[12] |
秘彩莉,刘旭,张学勇. F-box蛋白质在植物生长发育中的功能[J]. 遗传, 2006, 28(10): 1337-1205. |
|