| [1] | Rudin N, Haber JE . Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol Cell Biol, 1988,8(9):3918-3928. | | [2] | Capecchi MR . Altering the genome by homologous recombination. Science, 1989,244(4910):1288-1292. | | [3] | Lin FL, Sperle K, Sternberg N . Recombination in mouse L-cells between DNA introduced into cells and homologous chromosomal sequences. Proc Natl Acad Sci USA, 1985,82(5):1391-1395. | | [4] | Jasin M . Genetic manipulation of genomes with rare- cutting endonucleases. Trends Genet, 1996,12(6):224-228. | | [5] | Belfort M, Roberts RJ . Homing endonucleases: keeping the house in order. Nucleic Acids Res, 1997,25(17):3379-3388. | | [6] | Jeggo PA . DNA breakage and repair. Adv Genet, 1998,38:185-218. | | [7] | Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J, Montoya G, Paques F, Duchateau P . A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research, 2006,34(22):e149. | | [8] | Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC . Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 2005,435(7042):646-651. | | [9] | Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to FokⅠ cleavage domain. Proc Natl Acad Sci U S A, 1996,93(3):1156-1160. | | [10] | Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD . Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 2010,11(9):636-646. | | [11] | Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B . TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokⅠ DNA- cleavage domain. Nucleic Acids Res, 2011,39(1):359-372. | | [12] | Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B . Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res, 2011,39(14):6315-6325. | | [13] | Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF . Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010,186(2):757-761. | | [14] | Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ . A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 2011,29(2):143-148. | | [15] |
|
| [1] |
周迅, 周世杰, 刘捷, 王宇祥. 靶向RNA的CRISPR/Cas系统及衍生技术[J]. 遗传, 2025, 47(8): 842-860. |
| [2] |
倪嘉欣, 张蔚. 蝶翅花纹的演化发育生物学研究进展[J]. 遗传, 2025, 47(2): 258-270. |
| [3] |
潘东霞, 王辉, 熊本海, 唐湘方. CRISPR-Cas基因编辑技术在羊生产应用中研究进展[J]. 遗传, 2024, 46(9): 690-700. |
| [4] |
杨森, 马宝霞, 钱泓润, 崔婕妤, 张潇筠, 李利达, 魏泽辉, 张智英, 王建刚, 徐坤. 基于小型化Cas蛋白的CRISPR/Gal4BD-Cas供体适配基因编辑系统研究[J]. 遗传, 2024, 46(9): 716-726. |
| [5] |
王陈颖, 肖荟尹, 诸志鹏, 郑素雅, 徐良, 陈烨. 子宫平滑肌肉瘤的分子遗传学特征与研究进展[J]. 遗传, 2024, 46(8): 603-626. |
| [6] |
马宝霞, 杨森, 吕明, 王昱人, 常立业, 韩艺帆, 王建刚, 郭杨, 徐坤. 不同CRISPR/Cas9供体适配基因编辑系统的比较及优化研究[J]. 遗传, 2024, 46(6): 466-477. |
| [7] |
曹振林, 李金红, 周铭辉, 张曼婷, 王宁, 陈一飞, 李嘉欣, 祝青松, 宫雯珺, 杨绪晨, 方小龙, 和家贤, 李美娜. 大豆花药优势表达基因GmFLA22a调控雄性育性的功能研究[J]. 遗传, 2024, 46(4): 333-345. |
| [8] |
孙飘, 李颖, 刘帆, 王璐. TPI缺乏症斑马鱼模型的构建及分析[J]. 遗传, 2024, 46(3): 232-241. |
| [9] |
鲍艳春, 戴伶俐, 刘在霞, 马凤英, 王宇, 刘永斌, 谷明娟, 娜日苏, 张文广. CRISPR/Cas9系统在畜禽遗传改良中研究进展[J]. 遗传, 2024, 46(3): 219-231. |
| [10] |
石译, 余垚, 吕奕琳, 吕红. 遗传上位效应的教学实验设计与实践[J]. 遗传, 2024, 46(11): 958-970. |
| [11] |
卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
| [12] |
王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
| [13] |
刘丹妮, 武海萍, 周国华. 可视化分析在病原体核酸现场快速检测中的研究进展[J]. 遗传, 2023, 45(4): 306-323. |
| [14] |
吴仲胜, 高誉, 杜勇涛, 党颂, 何康敏. CRISPR-Cas9基因编辑技术对细胞内源蛋白进行荧光标记的实验操作[J]. 遗传, 2023, 45(2): 165-175. |
| [15] |
杨臻嵘, 周钢桥. CRISPR基因组编辑技术在传染病致病机理研究和防诊治中的应用[J]. 遗传, 2023, 45(11): 950-962. |
|