[1] | D öhner H Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med, 2015,373(12):1136-1152. | [2] | Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer, 2007,7(11):823-833. | [3] | Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML . Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev, 2007,21(21):2762-2774. | [4] | Wang QF, Li YJ, Dong JF, Li B, Kaberlein JJ, Zhang L, Arimura FE, Luo RT, Ni J, He F, Wu J, Mattison R, Zhou J, Wang CZ, Prabhakar S, Nobrega MA, Thirman MJ . Regulation of MEIS1 by distal enhancer elements in acute leukemia. Leukemia, 2014,28(1):138-146. | [5] | Zhou J, Wu J, Li B, Liu D, Yu J, Yan X, Zheng S, Wang J, Zhang L, Zhang L, He F, Li Q, Chen A, Zhang Y, Zhao X, Guan Y, Zhao X, Yan J, Ni J, Nobrega MA, Löwenberg B, Delwel R, Valk PJ, Kumar A, Xie L, Tenen DG, Huang G, Wang QF . PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway. Leukemia, 2014, 28(7): 1436-14-48. | [6] | Li J, He F, Zhang P, Chen S, Shi H, Sun Y, Guo Y, Yang H, Man N, Greenblatt S, Li Z, Guo Z, Zhou Y, Wang L, Morey L, Williams S, Chen X, Wang QT, Nimer SD, Yu P, Wang QF, Xu M, Yang FC . Loss of Asxl2 leads to myeloid malignancies in mice. Nat Commun, 2017,8:15456. | [7] | Yang XJ, Lu B, Sun XQ, Han CJ, Fu CL, Xu KL, Wang M, Li DJ, Chen ZC, Opal P, Wen Q, Crispino JD, Wang QF, Huang Z . ANP32A regulates histone H3 acety-lation and promotes leukemogenesis. Leukemia, 2018,32:1587-1597. | [8] | Zhu X, He F, Zeng H, Ling S, Chen A, Wang Y, Yan X, Wei W, Pang Y, Cheng H, Hua C, Zhang Y, Yang X, Lu X, Cao L, Hao L, Dong L, Zou W, Wu J, Li X, Zheng S, Yan J, Zhou J, Zhang L, Mi S, Wang X, Zhang L, Zou Y, Chen Y, Geng Z, Wang J, Zhou J, Liu X, Wang J, Yuan W, Huang G, Cheng T, Wang QF . Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet, 2014,46(3):287-293. | [9] | Bu J, Chen A, Yan X, He F, Dong Y, Zhou Y, He J, Zhan D, Lin P, Hayashi Y, Sun Y, Zhang Y, Xiao Z, Grimes HL, Wang QF, Huang G . SETD2-mediated crosstalk between H3K36me3 and H3K79me2 in MLL-rearranged leukemia. Leukemia, 2018,32(4):890-899. | [10] | Suzuki R . Treatment of advanced extranodal NK/T cell lymphoma, nasal-type and aggressive NK-cell leukemia. Int J Hematol, 2010,92(5):697-701. | [11] | Huang L, Liu D, Wang N, Ling S, Tang Y, Wu J, Hao L, Luo H, Hu X, Sheng L, Zhu L, Wang D, Luo Y, Shang Z, Xiao M, Mao X, Zhou K, Cao L, Dong L, Zheng X, Sui P, He J, Mo S, Yan J, Ao Q, Qiu L, Zhou H, Liu Q, Zhang H, Li J, Jin J, Fu L, Zhao W, Chen J, Du X, Qing G, Liu H, Liu X, Huang G, Ma D, Zhou J, Wang QF . Integrated genomic analysis identifies deregulated JAK/STAT-MYC- biosynthesis axis in aggressive NK-cell leukemia. Cell Res, 2018,28(2):172-186. | [12] |
|
[1] |
吕倩雯, 杨永芳. 植物小肽信号生物学功能及其在作物改良中研究进展[J]. 遗传, 2023, 45(9): 813-828. |
[2] |
杨子玫, 张格, 魏刚, 经莉莉, 于明. AFF4在人类HEL细胞中广泛地影响RNA聚合酶II的停滞释放[J]. 遗传, 2023, 45(8): 658-668. |
[3] |
张翌, 吴志英. 伴皮质下梗死和白质脑病的常染色体显性遗传性脑动脉病的发病机制及治疗研究进展[J]. 遗传, 2023, 45(7): 568-579. |
[4] |
杨阳, 储明星, 刘秋月. 生物钟作用机制及其对动物年节律产生的影响[J]. 遗传, 2023, 45(5): 409-424. |
[5] |
漆思晗, 王棨临, 张俊有, 刘倩, 李春燕. 增强子调控癌症发生发展的机制研究[J]. 遗传, 2022, 44(4): 275-288. |
[6] |
曲卉, 柳毅, 陈雅文, 汪晖. 环境因素所致印迹基因改变与子代器官发育[J]. 遗传, 2022, 44(2): 107-116. |
[7] |
蒋卓远, 查艳, 石小峰, 张永彪. 神经嵴细胞和神经嵴病及其致病机制的研究进展[J]. 遗传, 2022, 44(2): 117-133. |
[8] |
王心缘, 孙睿, 高原青. Prader-Willi综合征下丘脑功能障碍的遗传机制研究进展[J]. 遗传, 2022, 44(10): 899-912. |
[9] |
肖诚, 刘洁颖, 杨春如, 于淼. LMNA基因突变相关脂肪萎缩综合征的研究进展[J]. 遗传, 2022, 44(10): 913-925. |
[10] |
吕承安, 王若然, 孟卓贤. 2型糖尿病进程中胰岛β细胞功能变化的分子机制[J]. 遗传, 2022, 44(10): 840-852. |
[11] |
高珊珊, 李金良, 杨佳妮, 周通, 刘瑞, 王晓萍, 于黎. 哺乳动物滑翔和飞行性状适应性演化研究进展[J]. 遗传, 2022, 44(1): 46-58. |
[12] |
杨恒, 逄越, 李庆伟. 七鳃鳗胆道闭锁过程中胆汁酸耐受机制研究进展[J]. 遗传, 2022, 44(1): 59-67. |
[13] |
王昕玥, 渠鸿竹, 方向东. 组学大数据和医学人工智能[J]. 遗传, 2021, 43(10): 930-937. |
[14] |
何晓红, 蒋琳, 浦亚斌, 赵倩君, 马月辉. 牛、绵羊角的遗传定位及遗传机制研究进展[J]. 遗传, 2021, 43(1): 40-51. |
[15] |
妥晓梅, 朱东丽, 陈晓峰, 荣誉, 郭燕, 杨铁林. 骨质疏松易感SNP rs4325274通过增强子远程调控SOX6基因的功能机制研究[J]. 遗传, 2020, 42(9): 889-897. |
|