[1] |
Aaron C. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J, 1998, 17(24): 7151-7160.
doi: 10.1093/emboj/17.24.7151
pmid: 9857172
|
[2] |
Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, Thakare RP, Banday S, Mishra AK, Das G, Malonia SK. Next-generation sequencing technology: current trends and advancements. Biology (Basel), 2023, 12(7): 997.
|
[3] |
UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res, 2023, 51(D1): D523-D531.
|
[4] |
Yan TC, Yue ZX, Xu HQ, Liu YH, Hong YF, Chen GX, Tao L, Xie T. A systematic review of state-of-the-art strategies for machine learning-based protein function prediction. Comput Biol Med, 2023, 154: 106446.
|
[5] |
McDonald AG, Tipton KF. Enzyme nomenclature and classification: the state of the art. FEBS J, 2023, 290(9): 2214-2231.
|
[6] |
Markus B, C GC, Andreas K, Arkadij K, Stefan L, Gustav O, Elina S, Radka S. Accelerating biocatalysis discovery with machine learning: a paradigm shift in enzyme engineering, discovery, and design. ACS Catal, 2023, 13(21): 14454-14469.
doi: 10.1021/acscatal.3c03417
pmid: 37942268
|
[7] |
Ai YJ, He MQ, Liang QL. Recent research progress in nanozyme and their biomedical applications. Chin Pharm J, 2023, 58(20): 1801-1813.
doi: 10.11669/cpj.2023.20.001
|
|
艾永建, 何梦崎, 梁琼麟. 纳米酶在生物医药领域应用的研究进展. 中国药学杂志, 2023, 58(20): 1801-1813.
doi: 10.11669/cpj.2023.20.001
|
[8] |
Du WZ, Li YJ, Wu JL, Chen SY, Jiang L, Liu G, Xie N. Identification and functional study of AA11 family polysaccharide monooxygenase genes in filamentous fungus Podospora anserina. Hereditas(Beijing), 2023, 45(12): 1128-1146.
|
|
杜文珍, 李元敬, 吴佳玲, 陈思羽, 姜亮, 刘刚, 谢宁. 丝状真菌Podospora anserina AA11家族裂解多糖单加氧酶基因的鉴定和功能研究. 遗传, 2023, 45(12): 1128-1146.
|
[9] |
Shang XK, Zhang SM, Ni JJ. Research progress of cathepsin B in brain aging and Alzheimer’s diseases. Hereditas(Beijing), 2023, 45(3): 212-220.
|
|
商晓康, 张思萌, 倪军军. 组织蛋白酶B参与脑衰老及阿尔兹海默症发生发展研究进展. 遗传, 2023, 45(3): 212-220.
|
[10] |
Wang CW, Shui K, Ma SS, Lin SF, Zhang Y, Wen B, Deng WK, Xu HD, Hu H, Guo AY, Xue Y, Zhang LY. Integrated omics in Drosophila uncover a circadian kinome. Nat Commun, 2020, 11(1): 2710.
|
[11] |
Wang M, Wang LY, Liu HZ, Chen JJ, Liu D. Transcriptome analyses implicate endogenous retroviruses involved in the host antiviral immune system through the interferon pathway. Virol Sin, 2021, 36(6):1315-1326.
doi: 10.1007/s12250-021-00370-2
pmid: 34009516
|
[12] |
Li SJ, Zhao J, Xiao R. A literature review of the application of enzymes in processing of plant-based foods for elderly people. Food Science, 2019, 40(21): 350-356.
doi: 10.7506/spkx1002-6630-20181011-089
|
|
李双娇, 赵静, 肖蓉. 酶在植物源性老年食品加工中的应用研究进展. 食品科学, 2019, 40(21): 350-356.
doi: 10.7506/spkx1002-6630-20181011-089
|
[13] |
Victorino da Silva Amatto I, Gonsales da Rosa-Garzon N, Antônio de Oliveira Simões F, Santiago F, Pereira da Silva Leite N, Raspante Martins J, Cabral H. Enzyme engineering and its industrial applications. Biotechnol Appl Biochem, 2022, 69(2): 389-409.
|
[14] |
East KW, Skeens E, Cui JY, Belato HB, Mitchell B, Hsu R, Batista VS, Palermo G, Lisi GP. NMR and computational methods for molecular resolution of allosteric pathways in enzyme complexes. Biophys Rev, 2020, 12(1): 155-174.
doi: 10.1007/s12551-019-00609-z
pmid: 31838649
|
[15] |
Vedel IM, Papagiannoula A, Naudi-Fabra S, Milles S. Nuclear magnetic resonance/single molecule fluorescence combinations to study dynamic protein systems. Curr Opin Struct Biol, 2023, 82: 102659.
|
[16] |
Yabukarski F, Biel JT, Pinney MM, Doukov T, Powers AS, Fraser JS, Herschlag D. Assessment of enzyme active site positioning and tests of catalytic mechanisms through X-ray-derived conformational ensembles. Proc Natl Acad Sci USA, 2020, 117(52): 33204-33215.
doi: 10.1073/pnas.2011350117
pmid: 33376217
|
[17] |
Dalkiran A, Rifaioglu AS, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature. BMC Bioinformatics, 2018, 19(1): 334.
doi: 10.1186/s12859-018-2368-y
pmid: 30241466
|
[18] |
Chi FY, Li C, Feng XD. Advances in machine learning for predicting protein functions. Chin J Biotechnol, 2023, 39(6): 2141-2157.
|
|
池燕飞, 李春, 冯旭东. 机器学习在蛋白质功能预测领域的研究进展. 生物工程学报, 2023, 39(6): 2141-2157.
|
[19] |
Chen MM, Zhang WZ, Gou YJ, Xu DY, Wei YX, Liu D, Han C, Huang XH, Li CZ, Ning WS, Peng D, Xue Y. GPS 6.0: an updated server for prediction of kinase-specific phosphorylation sites in proteins. Nucleic Acids Res, 2023, 51(W1): W243-W250.
doi: 10.1093/nar/gkad383
pmid: 37158278
|
[20] |
Ruan CF, Ning WS, Liu Z, Zhang XL, Fang Z, Li YN, Dang YJ, Xue Y, Ye ML. Precipitate-supported thermal proteome profiling coupled with deep learning for comprehensive screening of drug target proteins. ACS Chem Biol, 2022, 17(1): 252-262.
doi: 10.1021/acschembio.1c00936
pmid: 34989232
|
[21] |
Shui K, Wang CW, Zhang XD, Ma SS, Li QY, Ning WS, Zhang WZ, Chen MM, Peng D, Hu H, Fang Z, Guo AY, Gao GJ, Ye ML, Zhang LY, Xue Y. Small-sample learning reveals propionylation in determining global protein homeostasis. Nat Commun, 2023, 14(1): 2813.
doi: 10.1038/s41467-023-38414-8
pmid: 37198164
|
[22] |
Zaru R, Orchard S; UniProt Consortium. UniProt tools: bLAST, align, peptide search, and ID mapping. Curr Protoc, 2023, 3(3): e697.
|
[23] |
Edgar RC. Muscle5: high-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun, 2022, 13(1): 6968.
doi: 10.1038/s41467-022-34630-w
pmid: 36379955
|
[24] |
Scheibenreif L, Littmann M, Orengo C, Rost B. FunFam protein families improve residue level molecular function prediction. BMC Bioinformatics, 2019, 20(1): 400.
doi: 10.1186/s12859-019-2988-x
pmid: 31319797
|
[25] |
Ryu JY, Kim HU, Lee SY. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proc Natl Acad Sci USA, 2019, 116(28): 13996-14001.
doi: 10.1073/pnas.1821905116
pmid: 31221760
|
[26] |
Han SR, Park M, Kosaraju S, Lee J, Lee H, Lee JH, Oh TJ, Kang M. Evidential deep learning for trustworthy prediction of enzyme commission number. Brief Bioinform, 2023, 25(1): bbad401.
|
[27] |
Sanderson T, Bileschi ML, Belanger D, Colwell LJ. ProteInfer, deep neural networks for protein functional inference. eLife, 2023, 12: e80942.
|
[28] |
Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv, 2015, doi:10.48550/arXiv.1511. 07122.
|
[29] |
Kim GB, Kim JY, Lee JA, Norsigian CJ, Palsson BO, Lee SY. Functional annotation of enzyme-encoding genes using deep learning with transformer layers. Nat Commun, 2023, 14(1): 7370.
|
[30] |
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gonez AN, Kaiser Ł, Polosukhin I. Attention is all you need. arXiv, 2017, doi:10.48550/arXiv.1706.03762.
|
[31] |
Shi ZK, Deng R, Yuan QQ, Mao ZT, Wang RY, Li HR, Liao XP, Ma HW. Enzyme commission number prediction and benchmarking with hierarchical dual-core multitask learning framework. Research (Wash DC), 2023, 6: 0153.
|
[32] |
Yu TH, Cui HY, Li JC, Luo YN, Jiang GD, Zhao HM. Enzyme function prediction using contrastive learning. Science, 379(6639): 1358-1363.
|
[33] |
Huang W, Liu GQ. Study on hierarchical multi-label text classification method of MSML-BERT model. Computer Engineering and Applications, 2022, 58(15): 191-201.
doi: 10.3778/j.issn.1002-8331.2111-0176
|
|
黄伟, 刘贵全. MSML-BERT模型的层级多标签文本分类方法研究. 计算机工程与应用, 2022, 58(15): 191-201.
doi: 10.3778/j.issn.1002-8331.2111-0176
|
[34] |
Johnson R, Zhang T. Deep pyramid convolutional neural networks for text categorization. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers), 2017, 562-570.
|
[35] |
Tipton K. Translocases (EC 7): a new EC class. Enzyme Nomenclature News, 2018.
|