[1] Csaba M, Zsuzsanna I, Ronald HP, Zoltan I. The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res, 2003, 31(23): 6873-6881.
[2] Kawakami K. Tol2: a versatile gene transfer vector in vertebrates. Genome Biol, 2007, 8(Suppl. 1): S7.
[3] 邹曙明, 杜雪地, 蒋霞云. 鱼类活性DNA转座子的发掘与应用概况. 上海海洋大学学报, 2012, 21(5): 656-661.
[4] Standford WL, Cohn JB, Cordes SP. Gene-trap mutagenesis: past, present and beyond. Nat Rev Genet, 2001, 2(10): 756-768.
[5] 朱作言, 许克圣, 谢岳峰, 李国华, 何玲. 转基因鱼模型的建立. 中国科学(B), 1989, (2): 147-155.
[6] Urasaki A, Mito T, Noji S, Ueda R, Kawakami K. Trans-position of the vertebrate Tol2 transposable element in Drosophila melanogaster. Gene, 2008, 425(1-2): 64-68.
[7] Kawakami K, Shima A. Identification of the Tol2 transpo-sase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene, 1999, 240(1): 239-244.
[8] Kawakami K, Koga A, Hori H, Shima A. Excision of the Tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene, 1998, 225(1-2): 17-22.
[9] Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA, 2000, 97(21): 11403-11408.
[10] Kawakami K, Imanaka K, Itoh M, Taira M. Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis. Gene, 2004, 338(1): 93-98.
[11] Sato Y, Kasai T, Nakagawa S, Tanabe K, Watanabe T, Kawakami K, Takahashi Y. Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol, 2007, 305(2): 616-624.
[12] Kawakami K, Noda T. Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics, 2004, 166(2): 895-899.
[13] Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, Wang X, Hackett PB, Largaespada DA, McIvor RS, Ekker SC. Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet, 2006, 2(11): e169.
[14] 邹曙明, 杜雪地, 袁剑, 蒋霞云. 金鱼 hAT 家族转座子Tgf2 的克隆及其结构. 遗传, 2010, 32(12): 1263-1268.
[15] Jiang XY, Du XD, Tian YM, Shen RJ, Sun CF, Zou SM. Gold?sh transposase Tgf2 presumably from recent horizontal transfer is active. FASEB J, 2012, 26(7): 2743-2752.
[16] Ministry of Agriculture of the People’s Republic of China. Chinese Fisheries Yearbook. Beijing: Chinese Agricultural Press, 2012: 30-31.
[17] Shen RJ, Jiang XY, Pu JW, Zou SM. HIF-1α and -2α genes in a hypoxia-sensitive teleost species Megalobrama am-blycephala: cDNA cloning, expression and different responses to hypoxia. Comp Biochem Physiol B Biochem Mol Biol, 2010, 157(3): 273-280.
[18] 孙效文, 徐鹏. 水产基因组技术与研究进展. 北京: 海洋出版社, 2011: 188-202.
[19] 简清, 白俊杰, 叶星, 夏仕玲, 梁旭方, 罗建仁. 斑马鱼Mylz2启动子的克隆与转绿色荧光蛋白基因鱼的构建. 中国水产科学, 2004, 11(5): 391-395.
[20] Ju BS, Chong SW, He JY, Wang XK, Xu YF, Wan HY, Tong Y, Yan T, Korzh V, Gong ZY. Recapitulation of fast skeletal muscle development in zebrafish by transgenic expression of GFP under the Mylz2 promoter. Dev Dyn, 2003, 227(1): 14-26.
[21] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989.
[22] Chun KT, Edenberg HJ, Kelley MR, Goebl MG. Rapid amplification of uncharacterized transposon-tagged DNA sequences from genomic DNA. Yeast, 1997, 13(3): 233-240.
[23] Uren AG, Mikkers H, Kool J, van der Weyden L, Lund AH, Wilson CH, Rance R, Jonkers J, van Lohuizen M, Berns A, Adams DJ. A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nat Protoc, 2009, 4(5): 789-798.
[24] Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H. Trans-posable element in fish. Nature, 1996, 383(6595): 30.
[25] Li YY, Zhang JP. Gene trapping techniques and current progress. Acta Genet Sin, 2006, 33(3): 189-198.
[26] Fujimura K, Kocher TD. Tol2-mediated transgenesis in ti-lapia (Oreochromis niloticus). Aquaculture, 2011, 319(3-4): 342-346.
[27] Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E, Chen W, Burgess S, Haldi M, Artzt K, Farrington S, Lin SY, Nissen RM, Hopkins N. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet, 2002, 31(2):135-140.
[28] 龙华, 尾里建二郎, 若松佑子, 松岛良次. 红色荧光蛋白(RFP)基因在转基因青鳉中的表达.中国水产科学, 2002, 9(2): 97-99.
[29] Moutou KA, Canario AV, Mamuris Z, Power DM. Molecular cloning and sequence of Sparus aurata skeletal myosin light chains expressed in white muscle: developmental expression and thyroid regulation. J Exp Biol, 2001, 204(17): 3009-3018.
[30] Gothilf Y, Toyama R, Coon SL, Du SJ, Dawid IB, Klein DC. Pineal-specific expression of green fluorescent pro-tein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish. Dev Dyn, 2002, 225(3): 241-249.
[31] 陈敏, 白俊杰, 姜鹏, 叶星. 红色荧光蛋白基因在转基因唐鱼中的表达.大连水产学院学报, 2009, 24(增刊): 59-63. |