[1] | Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol, 2012, 8(12): e1002822. | [2] | Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet, 2012, 90(1): 7-24. | [3] | Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 Years of GWAS discovery: Biology, function, and translation. Am J Hum Genet, 2017, 101(1): 5-22. | [4] | Yan WL. Genome-wide association study on complex diseases: genetic statistical issues. Hereditas (Beijing), 2008, 30( 5): 543- 549. | [4] | 严卫丽. 复杂疾病全基因组关联研究进展——遗传统计分析. 遗传, 2008, 30( 5): 543- 549. | [5] | Han JW , Zhang XJ. Current status of genome-wide association study. Hereditas (Beijing), 2011, 33( 1): 25- 35. | [5] | 韩建文, 张学军. 全基因组关联研究现状. 遗传, 2011, 33( 1): 25- 35. | [6] | DeWan A, Liu M, Hartman S, Zhang SSM, Liu DTL, Zhao C, Tam POS, Chan WM, Lam DSC, Snyder M, Barnstable C, Pang CP, Hoh J. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science, 2006, 314(5801): 989-992. | [7] | Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res, 2014, 42(Database issue): D1001-D1006. | [8] | Falush D, Bowden R. Genome-wide association mapping in bacteria?. Trends Microbiol, 2006, 14(8): 353-355. | [9] | Falush D. Bacterial genomics: Microbial GWAS coming of age. Nat Microbiol, 2016, 1: 16059. | [10] | Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA, Kelly DJ, Bentley SD, Maiden MCJ, Parkhill J, Falush D. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl Acad Sci USA, 2013, 110(29): 11923-11927. | [11] | Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren RM, Streicher EM, Calver A, Sloutsky A, Kaur D, Posey JE, Plikaytis B, Oggioni MR, Gardy JL, Johnston JC, Rodrigues M, Tang PK, Kato- Maeda M, Borowsky ML, Muddukrishna B, Kreiswirth BN, Kurepina N, Galagan J, Gagneux S, Birren B, Rubin EJ, Lander ES, Sabeti PC, Murray M. Genomic analysis identifies targets of convergent positive selection in drug- resistant Mycobacterium tuberculosis. Nat Genet, 2013, 45(10): 1183-1189. | [12] | Alam MT, Petit RA 3rd, Crispell EK, Thornton TA, Conneely KN, Jiang Y, Satola SW, Read TD. Dissecting vancomycin-intermediate resistance in staphylococcus aureus using genome-wide association. Genome Biol Evol, 2014, 6(5): 1174-1185. | [13] | Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR, Mather AE, Hanage WP, Goldblatt D, Nosten FH, Turner C, Turner P, Bentley SD, Parkhill J. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet, 2014, 10(8): e1004547. | [14] | Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z, Sloan TJ, Williams P, Endres JL, Bayles KW, Fey PD, Yajjala VK, Widhelm T, Hawkins E, Lewis K, Parfett S, Scowen L, Peacock SJ, Holden M, Wilson D, Read TD, Van Den Elsen J, Priest NK, Feil EJ, Hurst LD, Josefsson E, Massey RC. Predicting the virulence of MRSA from its genome sequence. Genome Res, 2014, 24(5): 839-849. | [15] | Chen PE, Shapiro BJ. The advent of genome-wide association studies for bacteria. Curr Opin Microbiol, 2015, 25: 17-24. | [16] | Pascoe B, Méric G, Murray S, Yahara K, Mageiros L, Bowen R, Jones NH, Jeeves RE, Lappin-Scott HM, Asakura H, Sheppard SK. Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds inCampylobacter jejuni. Environ Microbiol, 2015, 17(11): 4779-4789. | [17] | Weinert LA, Chaudhuri RR, Wang J, Peters SE, Corander J, Jombart T, Baig A, Howell KJ, Vehkala M, V?lim?ki N, Harris D, Chieu TT, Van Vinh Chau N, Campbell J, Schultsz C, Parkhill J, Bentley SD, Langford PR, Rycroft AN, Wren BW, Farrar J, Baker S, Hoa NT, Holden MT, Tucker AW, Maskell DJ, BRaDP1T Consortium. Genomic signatures of human and animal disease in the zoonotic pathogenStreptococcus suis. Nat Commun, 2015, 6: 6740. | [18] | Desjardins CA, Cohen KA, Munsamy V, Abeel T, Maharaj K, Walker BJ, Shea TP, Almeida DV, Manson AL, Salazar A, Padayatchi N, O'donnell MR, Mlisana KP, Wortman J, Birren BW, Grosset J, Earl AM, Pym AS. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nat Genet, 2016, 48(5): 544-551. | [19] | Maury MM, Tsai YH, Charlier C, Touchon M, Chenal-Francisque V, Leclercq A, Criscuolo A, Gaultier C, Roussel S, Brisabois A, Disson O, Rocha EPC, Brisse S, Lecuit M. UncoveringListeria monocytogenes hypervirulence by harnessing its biodiversity. Nat Genet, 2016, 48(3): 308-313. | [20] | Suzuki M, Shibayama K, Yahara K. A genome-wide association study identifies a horizontally transferred bacterial surface adhesin gene associated with antimicrobial resistant strains. Sci Rep, 2016, 6: 37811. | [21] | Buchanan CJ, Webb AL, Mutschall SK, Kruczkiewicz P, Barker DOR, Hetman BM, Gannon VPJ, Abbott DW, Thomas JE, Inglis GD, Taboada EN. A genome-wide association study to identify diagnostic markers for human pathogenicCampylobacter jejuni strains. Front Microbiol, 2017, 8: 1224. | [22] | Lees JA, Croucher NJ, Goldblatt D, Nosten F, Parkhill J, Turner C, Turner P, Bentley SD. Genome-wide identification of lineage and locus specific variation associated with pneumococcal carriage duration. eLife, 2017, 6: e26255. | [23] | Mobegi FM, Cremers AJH, De Jonge MI, Bentley SD, Van Hijum SAFT, Zomer A. Deciphering the distance to antibiotic resistance for the pneumococcus using genome sequencing data. Sci Rep, 2017, 7: 42808. | [24] | Yahara K, Méric G, Taylor AJ, De Vries SPW, Murray S, Pascoe B, Mageiros L, Torralbo A, Vidal A, Ridley A, Komukai S, Wimalarathna H, Cody AJ, Colles FM, McCarthy N, Harris D, Bray JE, Jolley KA, Maiden MCJ, Bentley SD, Parkhill J, Bayliss CD, Grant A, Maskell D, Didelot X, Kelly DJ, Sheppard SK. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ Microbiol, 2017, 19(1): 361-380. | [25] | Power RA, Parkhill J, De Oliveira T. Microbial genome- wide association studies: lessons from human GWAS. Nat Rev Genet, 2017, 18: 41-50. | [26] | Farhat MR, Shapiro BJ, Sheppard SK, Colijn C, Murray M. A phylogeny-based sampling strategy and power calculator informs genome-wide associations study design for microbial pathogens. Genome Med, 2014, 6(11): 101. | [27] | Read TD, Massey RC. Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology. Genome Med, 2014, 6(11): 109. | [28] | Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW. Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics, 2015, 15(2): 141-161. | [29] | Olson ND, Lund SP, Colman RE, Foster JT, Sahl JW, Schupp JM, Keim P, Morrow JB, Salit ML, Zook JM. Best practices for evaluating single nucleotide variant calling methods for microbial genomics. Front Genet, 2015, 6: 236. | [30] | Loman NJ, Pallen MJ. Twenty years of bacterial genome sequencing. Nat Rev Microbiol, 2015, 13(12): 787-794. | [31] | Vernikos G, Medini D, Riley DR, Tettelin H. Ten years of pan-genome analyses. Curr Opin Microbiol, 2015, 23: 148-154. | [32] | Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81(3): 559-575. | [33] | Thornton T, McPeek MS. ROADTRIPS: case-control association testing with partially or completely unknown population and pedigree structure. Am J Hum Genet, 2010, 86(2): 172-184. | [34] | Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. FaST linear mixed models for genome- wide association studies. Nat Methods, 2011, 8(10): 833-835. | [35] | Collins C, Didelot X. A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination. bioRxiv, 2017, 140798. | [36] | Earle SG, Wu CH, Charlesworth J, Stoesser N, Gordon NC, Walker TM, Spencer CCA, Iqbal Z, Clifton DA, Hopkins KL, Woodford N, Smith EG, Ismail N, Llewelyn MJ, Peto TE, Crook DW, Mcvean G, Walker AS, Wilson DJ. Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Nat Microbiol, 2016, 1: 16041. | [37] | Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol, 2016, 17(1): 238. | [38] | Lees JA, Vehkala M, Valimaki N, Harris SR, Chewapreecha C, Croucher NJ, Marttinen P, Davies MR, Steer AC, Tong SY, Honkela A, Parkhill J, Bentley SD, Corander J. Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes. Nat Commun, 2016, 7: 12797. | [39] | Didelot X, Maiden MCJ. Impact of recombination on bacterial evolution. Trends Microbiol, 2010, 18(7): 315-322. | [40] | Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA, 2003, 100(16): 9440-9445. | [41] | Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni JF, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS. Replicating genotype-phenotype associations. Nature, 2007, 447(7145): 655-660. | [42] | Falkow S. Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis, 1988, 10 Suppl 2: S274-S276. |
|