[1] | Shan QW, Gao CX . Research progress of genome editing and derivative technologies in plants . Hereditas (Beijing), 2015,37(10):953-973. | [1] | 单奇伟, 高彩霞 . 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015,37(10):953-973. | [2] | Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain . Proc Natl Acad Sci USA, 1996,93(3):1156-1160. | [3] | Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U . Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors . Science, 2009,326(5959):1509-1512. | [4] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering . Cell, 2014,157(6):1262-1278. | [5] | Wan HF, Feng CJ, Teng F, Yang SH, Hu BY, Niu YY, Xiang AP, Fang WZ, Ji WZ, Li W, Zhao XY, Zhou Q . One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res, 2015,25(2):258-261. | [6] | Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R . One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering . Cell, 2013,154(6):1370-1379. | [7] | Voytas DF . Plant genome engineering with sequence- specific nucleases . Annu Rev Plant Biol, 2013,64(64):327-350. | [8] | Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL . Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew . Nat Biotechnol, 2014,32(9):947-951. | [9] | Shen L, Hua YF, Fu YP, Li J, Liu Q, Jiao XZ, Xin GW, Wang JJ, Wang XC, Yan CJ, Wang KJ . Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice . Sci China Life Sci, 2017,60(5):506-515. | [10] | Li S, Yang YY, Qiu Y, Chen YH, Xu LW, Ding QR . Applications of genome editing tools in precision medicine research . Hereditas (Beijing), 2017,39(3):177-188. | [10] | 李爽, 杨圆圆, 邱艳, 陈彦好, 徐璐薇, 丁秋蓉 . 基因组编辑技术在精准医学中的应用. 遗传, 2017,39(3):177-188. | [11] | Zhou XC, Xing YZ . The application of genome editing in identification of plant gene function and crop breeding . Hereditas (Beijing), 2016,38(3):227-242. | [11] | 周想春, 邢永忠 . 基因组编辑技术在植物基因功能鉴定及作物育种中的应用. 遗传, 2016,38(3):227-242. | [12] | Shan QW, Wang YP, Li J, Zhang Y, Chen KL, Liang Z, Zhang K, Liu JX, Xi JJ, Qiu JL, Gao CX . Targeted genome modification of crop plants using a CRISPR-Cas system . Nat Biotechnol, 2013,31(8):686-688. | [13] | Feng ZY, Zhang BT, Ding WN, Liu XD, Yang DL, Wei PL, Cao FQ, Zhu SH, Zhang F, Mao YF, Zhu JK . Efficient genome editing in plants using a CRISPR/Cas system . Cell Res, 2013,23:1229-1232. | [14] | Jiang F, Doudna JA . CRISPR-Cas9 structures and mechanisms . Annu Rev Biophys, 2017,46:505-529. | [15] | Horvath P, Romero DA, Coûtémonvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R . Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol, 2008,190(4):1401-1412. | [16] | Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S . Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol, 2008,190(4):1390-1400. | [17] | Zhang Y, Heidrich N, Ampattu BJ, Gunderson C, Seifert HS, Schoen C, Vogel J, Sontheimer E . Processing- independent CRISPR RNAs limit natural transformation inNeisseria meningitidis. Mol Cell, 2013,50(4):488-503. | [18] | Kleinstiver BP, Prew MS, Tsai SQ, Ved T, Nguyen NT, Zheng Z, Gonzales APW, Li ZY, Peterson RT, Joanna JR . Engineered CRISPR-Cas9 nucleases with altered PAM specificities . Nature, 2015,523(7561):481-485. | [19] | Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR . Evolved Cas9 variants with broad PAM compatibility and high DNA specificity . Nature, 2018,556(7699):57-63. | [20] | Hu X, Wang C, Fu YP, Liu Q, Jiao XZ, Wang KJ . Expanding the range of CRISPR/Cas9 genome editing in rice . Mol Plant, 2016,9(6):943-945. | [21] | Hu XX, Meng XB, Liu Q, Li JY, Wang KJ . Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice . Plant Biotechnol J, 2018,16(1):292-297. | [22] | Dang Y, Jia GX, Choi J, Ma HM, Anaya E, Ye CT, Shankar P, Wu HQ . Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency . Genome Biol, 2015,16:280. | [23] | Hiei Y, Ohta S, Komari T, Kumashiro T . Efficient transformation of rice ( Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994,6(2):271-282. | [24] | Ma XL, Chen LT, Zhu QL, Chen YL, Liu YG . Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products . Mol Plant, 2015,8(8):1285-1287. | [25] | Jiang D, Fang JJ, Lou LM, Zhao JF, Yuan SJ, Yin L, Sun W, Peng LX, Guo BT, Li XY . Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division. PLoS One, 2015,10(2):e0118169. | [26] | Qin BX, Tang D, Huang J, Li M, Wu XR, Lu LL, Wang KJ, Yu HX, Chen JM, Gu MH, Cheng ZK . RiceOsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Mol Plant, 4(6):985-995. |
|