[1] | Nolan T, Chen J, Yin Y . Cross-talk of brassinosteroid signaling in controlling growth and stress responses. Biochem J, 2017,474(16):2641-2661. | [2] | Song XJ . Crop seed size: BR matters. Mol Plant, 2017,10(5):668-669. | [3] | Li XJ, Chen XJ, Guo X, Yin LL, Ahammed GJ, Xu CJ, Chen KS, Liu CC, Xia XJ, Shi K, Zhou J, Zhou YH, Yu JQ . DWARF overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnol J, 2016,14:1021-1033. | [4] | Lv B, Tian H, Zhang F, Liu J, Lu S, Bai M, Li C, Ding Z . Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet, 2018,14(1):e1007144. | [5] | Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, Singh SP, Krishna P . Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep, 2016,6:28298. | [6] | Yang J, Thames S, Best NB, Jiang H, Huang P, Dilkes BP, Eveland AL . Brassinosteroids modulate meristem fate and differentiation of unique inflorescence morphology in Setaria viridis. Plant Cell, 2018,30(1):48-66. | [7] | Corvalán C, Choe S . Identification of brassinosteroid genes in Brachypodium distachyon. BMC Plant Biol, 2017,17(1):5. | [8] | Kir G, Ye H, Nelissen H, Neelakandan AK, Kusnandar AS, Luo A, Inzé D, Sylvester AW, Yin Y, Becraft PW . RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol, 2015,169(1):826-839. | [9] | Belkhadir Y, Jaillais Y . The molecular circuitry of brassinosteroid signaling. New Phytol, 2015,206(2):522-540. | [10] | Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J . A new class of transcription factors mediates brassinosteroid- regulated gene expression in Arabidopsis. Cell, 2005,120(2):249-259. | [11] | Wang ZY, Bai MY, Oh E, Zhu JY . Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet, 2012,46:701-724. | [12] | Yu H, Feng W, Sun F, Zhang YY, Qu JT, Liu B, Lu F, Yang L, Fu F, Li W . Cloning and characterization of BES1/ BZR1 transcription factor genes in maize. Plant Growth Regul, 2018,86(2):235-249. | [13] | Oh E, Zhu JY, Wang ZY . Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol, 2012,14(8):802-809. | [14] | Qiao S, Sun S, Wang L, Wu Z, Li C, Li X, Wang T, Leng L, Tian W, Lu T, Wang X . The RLA1/SMOS1 transcr |
[1] |
韦湘怡, 胡冬春, 高祖鹏, 冯从经. JAK/STAT信号通路及其对昆虫免疫的调控[J]. 遗传, 2023, 45(3): 229-236. |
[2] |
林建辉, 刘自广, 张楠, 严容, 张楠, 何鑫淼, 王文涛, 刘娣, 吴娟. 拟南芥ABI5基因对BR胁迫响应及其对下胚轴生长的调节作用[J]. 遗传, 2021, 43(9): 901-909. |
[3] |
郝媛媛, 赵向前, 黄福灯, 李春寿. PPR蛋白在植物细胞器组分转录后调控中的作用机制[J]. 遗传, 2021, 43(11): 1050-1065. |
[4] |
谷晓勇, 刘扬, 刘利静. 植物激素水杨酸生物合成和信号转导研究进展[J]. 遗传, 2020, 42(9): 858-869. |
[5] |
张敏, 梁丽鸿, 鲁雅洁, 曹新. G蛋白偶联受体相关分选蛋白功能特征与相关疾病研究进展[J]. 遗传, 2020, 42(8): 713-724. |
[6] |
刘小民, 袁明龙. 昆虫天然免疫相关基因研究进展[J]. 遗传, 2018, 40(6): 451-466. |
[7] |
陈青云,李有志,樊宪伟. 植物气孔发育的分子调控机制[J]. 遗传, 2017, 39(4): 302-312. |
[8] |
郑仲仲 沈金秋 潘伟槐 潘建伟. 植物钙感受器及其介导的逆境信号途径[J]. 遗传, 2013, 35(7): 875-884. |
[9] |
胡帅,王芳展,刘振宁,刘亚培,余小林. PYR/PYL/RCAR蛋白介导植物ABA的信号转导[J]. 遗传, 2012, 34(5): 560-572. |
[10] |
戴鹏,刘欣,李庆伟. Lck和Fyn对T细胞发育过程的影响[J]. 遗传, 2012, 34(3): 289-295. |
[11] |
程曦,田彩娟,李爱宁,邱金龙. 植物与病原微生物互作分子基础的研究进展[J]. 遗传, 2012, 34(2): 134-144. |
[12] |
张帆涛,方军,孙昌辉,李润宝,罗向东,谢建坤,邓晓建,储成才. 水稻矮秆突变体dtl1的分离鉴定及其突变基因的精细定位[J]. 遗传, 2012, 34(1): 79-86. |
[13] |
陈华夏,周成博,邢永忠. 水稻Dwarf1移码突变的新突变体鉴定[J]. 遗传, 2011, 33(4): 397-403. |
[14] |
刘振华,于延冲,向凤宁. 生长素响应因子与植物的生长发育[J]. 遗传, 2011, 33(12): 1335-1346. |
[15] |
罗茂,张志明,高健,曾兴,潘光堂. miR319在植物器官发育中的调控作用[J]. 遗传, 2011, 33(11): 1203-1211. |
|