[1] | Ren CF, Sun HY, Wang LZ, Zhang GM, Fan YX, Yan GY, Wang D, Wang F . Reprogramming mechanism and genetic stability of induced pluripotent stem cells (iPSCs). Hereditas (Beijing), 2014,36(9):879-887. | [1] | 任才芳, 孙红艳, 王立中, 张国敏, 樊懿萱, 颜光耀, 王丹, 王锋 . iPSCs遗传稳定性与重编程机制的研究进展. 遗传, 2014,36(9):879-887. | [2] | Ji HL, Lu SS, Pan DK . Epigenetic reprogramming by somatic cell nuclear transfer: questions and potential solutions. Hereditas (Beijing), 2014,36(12):1211-1218. | [2] | 纪慧丽, 卢晟盛, 潘登科 . 体细胞核移植后表观遗传重编程的异常及其修复. 遗传, 2014,36(12):1211-1218. | [3] | Franklin SG, Zweidler A . Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature, 1977,266(5599):273-275. | [4] | Allshire RC, Karpen GH . Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet, 2008,9(12):923-937. | [5] | Witt O, Albig W, Doenecke D . Testis-specific expression of a novel human H3 histone gene. Exp Cell Res, 1996,229(2):301-306. | [6] | Wiedemann SM, Mildner SN, B?nisch C, Israel L, Maiser A, Matheisl S, Straub T, Merkl R, Leonhardt H, Kremmer E, Schermelleh L, Hake SB . Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. J Cell Biol, 2010,190(5):777-791. | [7] | Schenk R, Jenke A, Zilbauer M, Wirth S, Postberg J . H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. Chromosoma, 2011,120(3):275-285. | [8] | Taguchi H, Xie Y, Horikoshi N, Maehara K, Harada A, Nogami J, Sato K, Arimura Y, Osakabe A, Kujirai T, Iwasaki T, Semba Y, Tachibana T, Kimura H, Ohkawa Y, Kurumizaka H . Crystal structure and characterization of novel human histone H3 variants, H3.6, H3.7, and H3.8. Biochemistry, 2017,56(16):2184-2196. | [9] | Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M . Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol, 2006,50(5):455-461. | [10] | Ahmad K, Henikoff S . The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell, 2002,9(6):1191-1200. | [11] | Udugama M, Chang FTM, Chan FL, Tang MC, Pickett HA , McGhie JDR, Mayne L, Collas P, Mann JR, Wong LH. Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res, 2015,43(21):10227-10237. | [12] | Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME . Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol, 2010,12(9):853-862. | [13] |
[1] |
Zhichen Tian, Xiaojuan Yin.
Advances in the application of induced pluripotent stem cells in pediatric diseases
[J]. Hereditas(Beijing), 2023, 45(1): 42-51.
|
[2] |
Haoliang Cui, Peihua Shi, Jinchun Gao, Xinbo Zhang, Shunran Zhao, Chenyu Tao.
Progress on the study of nucleosome reorganization during cellular reprogramming
[J]. Hereditas(Beijing), 2022, 44(3): 208-215.
|
[3] |
Chenyi Cai, Feilong Meng, Lin Rao, Yunyue Liu, Xiaoli Zhao.
Induced pluripotent stem cell technology and its application in disease research [Retracted]
[J]. Hereditas(Beijing), 2020, 42(11): 1042-1061.
|
[4] |
Zheng Ao, Xiang Chen, Zhenfang Wu, Zicong Li.
Progress on abnormal development of cloned pigs generated by somatic cell transfer nuclear
[J]. Hereditas(Beijing), 2020, 42(10): 993-1003.
|
[5] |
Xiangrong Cheng,Xinglin Hu,Qi Jiang,Xingwei Huang,Nan Wang,Lei Lei.
The epigenetic regulation of ribosomal DNA and tumorigenesis
[J]. Hereditas(Beijing), 2019, 41(3): 185-192.
|
[6] |
Lan Kang, Jiayu Chen, Shaorong Gao.
Historical review of reprogramming and pluripotent stem cell research in China
[J]. Hereditas(Beijing), 2018, 40(10): 825-840.
|
[7] |
Ling Zhang, Jianbo He.
Progress of GATA6 in liver development
[J]. Hereditas(Beijing), 2018, 40(1): 22-32.
|
[8] |
Zhenwei Jia.
Mitochondria and pluripotent stem cells function
[J]. HEREDITAS(Beijing), 2016, 38(7): 603-611.
|
[9] |
Zheng Ao, Dewu Liu, Gengyuan Cai, Zhenfang Wu, Zicong Li.
Placental developmental defects in cloned mammalian animals
[J]. HEREDITAS(Beijing), 2016, 38(5): 402-410.
|
[10] |
Caifang Ren, Hongyan Sun, Lizhong Wang, Guomin Zhang, Yixuan Fan, Guangyao Yan, Dan Wang, Feng Wang.
Reprogramming mechanism and genetic stability of induced pluripotent stem cells (iPSCs)
[J]. HEREDITAS(Beijing), 2014, 36(9): 879-887.
|
[11] |
Mingjun Cao, Huansheng Dong, Qingjie Pan, Hongjun Wang, Xiao Dong.
Progress in early pancreas development and reprogramming of terminally differentiated cells into β cells
[J]. HEREDITAS(Beijing), 2014, 36(6): 511-518.
|
[12] |
Hongwei Song, Tiezhu An, Shanhua Piao, Chunsheng Wang.
Mammalian DNA methylation and its roles during the induced re-programming of somatic cells
[J]. HEREDITAS(Beijing), 2014, 36(5): 431-438.
|
[13] |
Kexue Ma, Keshi Ma, Xingzi Xi.
Research progress of epigenetic transgenerational phenotype
[J]. HEREDITAS(Beijing), 2014, 36(5): 476-484.
|
[14] |
Ji Huili, Lu Shengsheng, Pan Dengke.
Epigenetic reprogramming by somatic cell nuclear transfer: questions and potential solutions
[J]. HEREDITAS(Beijing), 2014, 36(12): 1211-1218.
|
[15] |
WANG Xue-Geng ZHU Zuo-Yan SUN Yong-Hua ZHAO Jue.
Nuclear transfer and reprogramming in fish
[J]. HEREDITAS, 2013, 35(4): 433-440.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|