Hereditas(Beijing) ›› 2020, Vol. 42 ›› Issue (12): 1201-1210.doi: 10.16288/j.yczz.20-196
• Research Article • Previous Articles Next Articles
Beibei Du, Lei Liu, Yangyang Zhu()
Received:
2020-06-27
Revised:
2020-10-18
Online:
2020-12-17
Published:
2020-12-02
Contact:
Zhu Yangyang
E-mail:zhuyyahau@163.com
Supported by:
Beibei Du, Lei Liu, Yangyang Zhu. RNA-binding protein Roquin negatively regulates STING-dependent innate immune response in Drosophila[J]. Hereditas(Beijing), 2020, 42(12): 1201-1210.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The primer sequences used in this study"
引物名称 | 引物序列(5′→3′) | 用途 |
---|---|---|
roquin-kd1#-f | CTAGCAGTCAGCTGCTTCAAGGTGTCCAATAGTTATATTCAAGCATATTGGACACCTTGAAGCAGCTGGCG | 构建转基因果蝇载体 |
roquin-kd1#-r | AATTCGCCAGCTGCTTCAAGGTGTCCAATATGCTTGAATATAACTATTGGACACCTTGAAGCAGCTGACTG | |
roquin-kd2#-f | CTAGCAGTCGCAATGATCTGCAAGCAGGATAGTTATATTCAAGCATATGCTGCTTGCTGATCATTGCGGCG | |
roquin-kd2#-r | AATTCGCCGCAATGATCAGCAAGCAGCATATGCTTGAATATAACTATCCTGCTTGCAGATCATTGCGACTG | |
pac5.1-flag-roquin-f | ATAGCGGCCGCATGCCGATTCAGGCT | 构建质粒 |
pac5.1-flag-roquin-r | GCGCTCGAGTTAGTCCACCTTGAT | |
pgl3-attp-luc-f | CGCGAATTCGAAGTTTGTCACGTAGTT | |
pgl3-attp-luc-r | CGCTCTAGATGCTTCCATCGACTGTTC | |
sting-f | CGTCCTTTCAAGCACGATGT | 荧光定量PCR |
sting-r | GTACGTCGCATCGAAGAAGG | |
roquin-f | GTATCTACGGCCCGATTTGC | |
roquin-r | CATCGGCTGTTGCTGCTTAT | |
actin-f | CCCAAGGCCAACCGTGAGAA | |
actin-r | CGGAGGCGTACAGCGAGAGC | |
attacin-f | CACCAGATCCTAATCGTGGCCCTGGG | |
attacin-r | ACGCGAATGGGTCCTGTTGT | |
diptericin-f | TTTGCAGTCCAGGGTCACCA | |
diptericin-r | CACGAGCCTCCATTCAGTCCAATCTCGG | |
rp49-f | CACGATAGCATACAGGCCCAAGATCGG | |
rp49-r | GCCATTTGTGCGACAGCTTAG | |
gfp-f | ACTATAGGGAGAAGCAAGGGCGAGGAGCTGTT | 合成双链RNA |
gfp-r | ACTATAGGGAGAGGTAGTGGTTGTCGGGCAGC | |
sting-f | ACTATAGGGAGAATTTCGGTTACCGGGAAT | |
sting-r | ACTATAGGGAGAGTCGCATCGAAGAAGGAT | |
roquin-1-f | ACTATAGGGAGAAACGGAAATGGCAATCTT | |
roquin-1-r | ACTATAGGGAGATGAACGATTTGGGCATCG | |
roquin-2-f | ACTATAGGGAGAACACCGTTGGCGCTGCAG | |
roquin-2-r | ACTATAGGGAGAGGCTTGCTGGACGGTGGC | |
roquin-3-f | ACTATAGGGAGAATAGAAGCGAATCGAGGG | |
roquin-3-r | ACTATAGGGAGATAATGACAGAAATAATGA |
[1] | Akira S, Uematsu S, Takeuchi O . Pathogen recognition and innate immunity. Cell, 2006,124(4):783-801. |
[2] | Bonjardim CA, Ferreira PC, Kroon EG . Interferons: signaling, antiviral and viral evasion. Immunol Lett, 2009,122(1):1-11. |
[3] | Bergman P, Seyedoleslami Esfahani S, Engström Y . Drosophila as a model for human diseases-focus on innate immunity in Barrier Epithelia. Curr Top Dev Biol, 2017,121:29-81. |
[4] | Imler JL . Overview of Drosophila immunity: a historical perspective. Dev Comp Immunol, 2014,42(1):3-15. |
[5] | Hoffmann JA, Reichhart JM . Drosophila innate immunity: an evolutionary perspective. Nat Immunol, 2002,3(2):121-126. |
[6] | Myllymäki H, Valanne S, Rämet M . The Drosophila Imd signaling pathway. J Immunol, 2014,192(8):3455-3462. |
[7] | Troutwine BR, Ghezzi A, Pietrzykowski AZ, Atkinson NS . Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway. Genes Brain Behav, 2016,15(4):382-394. |
[8] | Han M, Qin S, Song XJ, Li YF, Jin P, Chen LM, Ma F . Evolutionary rate patterns of genes involved in the Drosophila Toll and Imd signaling pathway. BMC Evol Biol, 2013,13:245. |
[9] | Wu JX, Sun LJ, Chen X, Du FH, Shi HP, Chen C, Chen ZJJ . Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 2013,339(6121):826-830. |
[10] | Sun LJ, Wu JX, Du FH, Chen X, Chen ZJJ . Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013,339(6121):786-791. |
[11] | Qiu Y, Zhou X . STING: from Mammals to Insects. Cell Host Microbe, 2018,24(1):5-7. |
[12] | Lee JJ, Andreazza S, Whitworth AJ . The STING pathway does not contribute to behavioural or mitochondrial phenotypes in Drosophila Pink1/parkin or mtDNA mutator models. Sci Rep, 2020,10(1):2693. |
[13] | Martin M, Hiroyasu A, Guzman RM, Roberts SA, Goodman AG. Analysis of Drosophila STING reveals an evolutionarily conserved antimicrobial function. Cell Rep, 2018, 23(12): 3537-3550.e6. |
[14] | Athanasopoulos V, Ramiscal RR, Vinuesa CG . ROQUIN signalling pathways in innate and adaptive immunity. Eur J Immunol, 2016,46(5):1082-1090. |
[15] | Sgromo A, Raisch T, Bawankar P, Bhandari D, Chen Y, Kuzuoğlu-Öztürk D, Weichenrieder O, Izaurralde E. A CAF40-binding motif facilitates recruitment of the CCR4-NOT complex to mRNAs targeted by Drosophila Roquin. Nat Commun, 2017,8:14307. |
[16] | Pratama A, Ramiscal RR, Silva DG, Das SK, Athanasopoulos V, Fitch J, Botelho NK, Chang PP, Hu X, Hogan JJ, Maña P, Bernal D, Korner H, Yu D, Goodnow CC, Cook MC, Vinuesa CG . Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity, 2013,38(4):669-680. |
[17] | Heissmeyer V, Vogel KU . Molecular control of Tfh-cell differentiation by Roquin family proteins. Immunol Rev, 2013,253(1):273-289. |
[18] | Schaefer JS, Klein JR . Roquin--a multifunctional regulator of immune homeostasis. Genes Immun, 2016, 17(2):79-84. |
[19] | Athanasopoulos V, Barker A, Yu D, Tan AHM, Srivastava M, Contreras N, Wang JB, Lam KP, Brown SHJ, Goodnow CC, Dixon NE, Leedman PJ, Saint R, Vinuesa CG . The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs. FEBS J, 2010,277(9):2109-2127. |
[20] | Ji SM, Luo YW, Cai QS, Cao ZJ, Zhao YY, Mei J, Li CX, Xia PY, Xie ZW, Xia ZP, Zhang J, Sun QM, Chen DH . LC domain-mediated coalescence is essential for Otu enzymatic activity to extend Drosophila lifespan. Mol Cell, 2019,74(2):363-377. |
[21] | Wang ZG . The guideline of the design and validation of MiRNA mimics. Methods Mol Biol, 2011,676:211-223. |
[22] | Ni JQ, Markstein M, Binari R, Pfeiffer B, Liu LP, Villalta C, Booker M, Perkins L, Perrimon N . Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods, 2008,5(1):49-51. |
[23] | Nainu F, Salim E, Asri RM, Hori A, Kuraishi T . Neurodegenerative disorders and sterile inflammation: lessons from a Drosophila model. J Biochem, 2019,166(3):213-221. |
[24] | Min KT . Drosophila as a model to study human brain degenerative diseases. Parkinsonism Relat Disord, 2001,7(3):165-169. |
[25] | Liu Y, Cherry S . Zika virus infection activates sting- dependent antiviral autophagy in the Drosophila brain. Autophagy, 2019,15(1):174-175. |
[26] | Essig K, Hu D, Guimaraes JC, Alterauge D, Edelmann S, Raj T, Kranich J, Behrens G, Heiseke A, Floess S, Klein J, Maiser A, Marschall S, de Angelis MH, Leonhardt H, Calkhoven CF, Noessner E, Brocker T, Huehn J, Krug AB, Zavolan M, Baumjohann D, Heissmeyer V. Roquin suppresses the PI3K-mTOR signaling pathway to inhibit T helper cell differentiation and conversion of Treg to Tfr cells. Immunity, 2017,47(6):1067-1082. |
[27] | Kim HJ, Ji YR, Kim MO, Yu DH, Shin MJ, Yuh HS, Bae KB, Park Sj, Yi JK, Kim NR, Park SJ, Yoon DH, Lee WH, Lee S, Ryoo ZY . The role of Roquin overexpression in the modulation of signaling during in vitro and ex vivo T-cell activation. Biochem Biophys Res Commun, 2012,417(1):280-286. |
[28] | Kato K, Omura H, Ishitani R, Nureki O . Cyclic GMP-AMP as an endogenous second messenger in innate immune signaling by cytosolic DNA. Annu Rev Biochem, 2017,86:541-566. |
[29] | Tavernier SJ, Athanasopoulos V, Verloo P, Behrens G, Staal J, Bogaert DJ, Naesens L, De Bruyne M, Van Gassen S, Parthoens E, Ellyard J, Cappello J, Morris LX, Van Gorp H, Van Isterdael G, Saeys Y, Lamkanfi M, Schelstraete P, Dehoorne J, Bordon V, Van Coster R, Lambrecht BN, Menten B, Beyaert R, Vinuesa CG, Heissmeyer V, Dullaers M, Haerynck F . A human immune dysregulation syndrome characterized by severe hyperinflammation with a homozygous nonsense Roquin-1 mutation. Nat Commun, 2019,10(1):4779. |
[1] | Junhao An, Xueying Zhao, Shouyi Qiao, Daru Lu, Yan Pi. Application of modern computer technology in classical genetics lab course——Development of a mobile, lightweight and high-precision batch identification system for genetic traits of Drosophila [J]. Hereditas(Beijing), 2023, 45(4): 354-363. |
[2] | Chengxian Wang, Yikang S. Rong, Min Cui. The molecular mechanism of Drosophila restricting telomeric transposons [J]. Hereditas(Beijing), 2023, 45(3): 221-228. |
[3] | Yuting Han, Bowen Xu, Yutong Li, Xinyi Lu, Xizhi Dong, Yuhao Qiu, Qinyun Che, Ruibao Zhu, Li Zheng, Xiaochen Li, Xu Si, Jianquan Ni. The cutting edge of gene regulation approaches in model organism Drosophila [J]. Hereditas(Beijing), 2022, 44(1): 3-14. |
[4] | Xuewen Liu, Hongmei Wu, Ying Bai, Qun Zeng, Zemin Cao, Xiushan Wu, Min Tang. Potassium channel Shaker play a protective role against cardiac aging in Drosophila [J]. Hereditas(Beijing), 2021, 43(1): 94-99. |
[5] | Yu Huang,Siqi Hu,Fei Guo. Interaction between stress granules and viruses [J]. Hereditas(Beijing), 2019, 41(6): 494-508. |
[6] | Jue Wang, Juan Huang, Rui Xu. Seamless genome editing in Drosophila by combining CRISPR/Cas9 and piggyBac technologies [J]. Hereditas(Beijing), 2019, 41(5): 422-429. |
[7] | Enhui Li,Xin Zhao,Ce Zhang,Wei Liu. Fragile X mental retardation protein participates in non-coding RNA pathways [J]. Hereditas(Beijing), 2018, 40(2): 87-94. |
[8] | Xiumei Zhang, Jie Gao, Chunhong Chen, Haijun Tu. Progress in the mechanisms of neural modulation of innate immunity in Caenorhabditis elegans [J]. Hereditas(Beijing), 2018, 40(12): 1066-1074. |
[9] | Shuguo Sun, Shian Wu, Lei Zhang, . The discovery and expansion of Hippo signaling pathway in Drosophila model [J]. Hereditas(Beijing), 2017, 39(7): 537-545. |
[10] | . Advances on molecular mechanisms of plant-pathogen interactions [J]. HEREDITAS, 2012, 34(2): 134-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号