Hereditas(Beijing) ›› 2021, Vol. 43 ›› Issue (11): 1038-1049.doi: 10.16288/j.yczz.21-206
• Orginal Articles • Previous Articles Next Articles
Tingting Ge(), Lu Yuan, Wenhua Xu, Ying Zheng(
)
Received:
2021-06-10
Revised:
2021-08-29
Online:
2021-11-20
Published:
2021-10-14
Contact:
Zheng Ying
E-mail:1499356709@qq.com;yzzkl@163.com
Supported by:
Tingting Ge, Lu Yuan, Wenhua Xu, Ying Zheng. Role and mechanism of intraflagellar transport in mammalian spermiogenesis[J]. Hereditas(Beijing), 2021, 43(11): 1038-1049.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Sloboda RD. Purification and localization of intraflagellar transport particles and polypeptides. Methods Mol Biol, 2009, 586:207-225.
doi: 10.1007/978-1-60761-376-3_11 pmid: 19768432 |
[2] |
Taschner M, Bhogaraju S, Lorentzen E. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation, 2012, 83(2):S12-22.
doi: 10.1016/j.diff.2011.11.001 |
[3] |
Avidor-Reiss T, Carr A, Fishman EL. The sperm centrioles. Mol Cell Endocrinol, 2020, 518:110987.
doi: 10.1016/j.mce.2020.110987 pmid: 32810575 |
[4] |
Lechtreck KF. IFT-cargo interactions and protein transport in cilia. Trends Biochem Sci, 2015, 40(12):765-778.
doi: S0968-0004(15)00176-0 pmid: 26498262 |
[5] |
Taschner M, Lorentzen E. The intraflagellar transport machinery. Cold Spring Harb Perspect Biol, 2016, 8(10):a028092.
doi: 10.1101/cshperspect.a028092 |
[6] |
Liu H, Li W, Zhang Y, Zhang ZG, Shang XJ, Zhang L, Zhang SY, Li YW, Somoza AV, Delpi B, Gerton GL, Foster JA, Hess RA, Pazour GJ, Zhang ZB. IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation. Biol Reprod, 2017, 96(5):993-1006.
doi: 10.1093/biolre/iox029 |
[7] |
Keady BT, Samtani R, Tobita K, Tsuchya M, San Agustin JT, Follit JA, Jonassen JA, Subramanian R, Lo CW, Pazour GJ. IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. Dev Cell, 2012, 22(5):940-951.
doi: 10.1016/j.devcel.2012.04.009 |
[8] |
Eddy EM, Toshimori K, O'Brien DA. Fibrous sheath of mammalian spermatozoa. Microsc Res Tech, 2003, 61(1):103-115.
doi: 10.1002/jemt.10320 |
[9] |
Bellyei S, Szigeti A, Boronkai A, Pozsgai E, Gomori E, Melegh B, Janaky T, Bognar Z, Hocsak E, Sumegi B, Gallyas F Jr. Inhibition of cell death by a novel 16.2 kD heat shock protein predominantly via Hsp90 mediated lipid rafts stabilization and Akt activation pathway. Apoptosis, 2007, 12(1):97-112.
doi: 10.1007/s10495-006-0486-x |
[10] |
Levental I, Veatch S. The continuing mystery of lipid rafts. J Mol Biol, 2016, 428(24 Pt A):4749-4764.
doi: 10.1016/j.jmb.2016.08.022 pmid: 27575334 |
[11] |
Zhu LH, Inaba K. Lipid rafts function in Ca2+ signaling responsible for activation of sperm motility and chemotaxis in the ascidian ciona intestinalis. Mol Reprod Dev, 2011, 78(12):920-929.
doi: 10.1002/mrd.21382 |
[12] |
Lucker BF, Behal RH, Qin H, Siron LC, Taggart WD, Rosenbaum JL, Cole DG. Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. J Biol Chem, 2005, 280(30):27688-27696.
pmid: 15955805 |
[13] |
Zhang Y, Liu H, Li W, Zhang ZG, Shang XJ, Zhang D, Li YH, Zhang SY, Liu JP, Hess RA, Pazour GJ, Zhang Z. Intraflagellar transporter protein (IFT27), an IFT25 binding partner, is essential for male fertility and spermiogenesis in mice. Dev Biol, 2017, 432(1):125-139.
doi: S0012-1606(17)30463-3 pmid: 28964737 |
[14] |
Kanie T, Abbott KL, Mooney NA, Plowey ED, Demeter J, Jackson PK. The CEP19-RABL2 GTPase complex binds IFT-B to initiate intraflagellar transport at the ciliary base. Dev Cell, 2017, 42(1):22-36.
doi: 10.1016/j.devcel.2017.05.016 |
[15] |
Nishijima Y, Hagiya Y, Kubo T, Takei R, Katoh Y, Nakayama K. RABL2 interacts with the intraflagellar transport-B complex and CEP19 and participates in ciliary assembly. Mol Biol Cell, 2017, 28(12):1652-1666.
doi: 10.1091/mbc.E17-01-0017 pmid: 28428259 |
[16] |
Shi L, Zhou T, Huang Q, Zhang SY, Li W, Zhang L, Hess RA, Pazour GJ, Zhang ZB. Intraflagellar transport protein 74 is essential for spermatogenesis and male fertility in mice. Biol Reprod, 2019, 101(1):188-199.
doi: 10.1093/biolre/ioz071 |
[17] |
Lucker BF, Miller MS, Dziedzic SA, Blackmarr PT, Cole DG. Direct interactions of intraflagellar transport complex B proteins IFT88, IFT52, and IFT46. J Biol Chem, 2010, 285(28):21508-21518.
doi: 10.1074/jbc.M110.106997 pmid: 20435895 |
[18] |
Wang ZH, Fan ZC, Williamson SM, Qin HM. Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in chlamydomonas. PLoS One, 2009, 4(5):e5384.
doi: 10.1371/journal.pone.0005384 |
[19] |
Brown JM, Cochran DA, Craige B, Kubo T, Witman GB. Assembly of IFT trains at the ciliary base depends on IFT74. Curr Biol, 2015, 25(12):1583-1593.
doi: 10.1016/j.cub.2015.04.060 |
[20] |
Qu W, Yuan S, Quan C, Huang Q, Zhou Q, Yap Y, Shi L, Zhang D, Guest T, Li W, Yee SP, Zhang L, Cazin C, Hess RA, Ray PF, Kherraf ZE, Zhang ZB. The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility. Am J Physiol Cell Physiol, 2020, 318(6):C1092-C1106.
doi: 10.1152/ajpcell.00450.2019 |
[21] |
Wang ZY, Shi YQ, Ma SH, Huang Q, Yap YT, Shi L, Zhang SY, Zhou T, Li W, Hu B, Zhang L, Krawetz SA, Pazour GJ, Hess RA, Zhang ZB. Abnormal fertility, acrosome formation, IFT20 expression and localization in conditional Gmap210 knockout mice. Am J Physiol Cell Physiol, 2020, 318(1):C174-C190.
doi: 10.1152/ajpcell.00517.2018 |
[22] |
Kierszenbaum AL, Rivkin E, Tres LL, Yoder BK, Haycraft CJ, Bornens M, Rios RM. GMAP210 and IFT88 are present in the spermatid golgi apparatus and participate in the development of the acrosome-acroplaxome complex, head-tail coupling apparatus and tail. Dev Dyn, 2011, 240(3):723-736.
doi: 10.1002/dvdy.22563 |
[23] |
San Agustin JT, Pazour GJ, Witman GB. Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Mol Biol Cell, 2015, 26(24):4358-4372.
doi: 10.1091/mbc.E15-08-0578 |
[24] |
Keady BT, Le YZ, Pazour GJ. IFT20 is required for opsin trafficking and photoreceptor outer segment development. Mol Biol Cell, 2011, 22(7):921-930.
doi: 10.1091/mbc.e10-09-0792 |
[25] |
Zhang ZG, Li W, Zhang Y, Zhang L, Teves ME, Liu H, Strauss JF 3rd, Pazour GJ, Foster JA, Hess RA, Zhang ZB. Intraflagellar transport protein IFT20 is essential for male fertility and spermiogenesis in mice. Mol Biol Cell, 2016, 27(23):3705-3716.
doi: 10.1091/mbc.e16-05-0318 |
[26] |
Pampliega O, Orhon I, Patel B, Sridhar S, Díaz-Carretero A, Beau I, Codogno P, Satir BH, Satir P, Cuervo AM. Functional interaction between autophagy and ciliogenesis. Nature, 2013, 502(7470):194-200.
doi: 10.1038/nature12639 |
[27] |
Joo K, Kim CG, Lee MS, Moon HY, Lee SH, Kim MJ, Kweon HS, Park WY, Kim CH, Gleeson JG, Kim J. CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc Natl Acad Sci USA, 2013, 110(15):5987-5992.
doi: 10.1073/pnas.1220927110 |
[28] |
Zhang L, Zhen JK, Huang Q, Liu H, Li W, Zhang SY, Min J, Li YH, Shi L, Woods J, Chen XQ, Shi YQ, Liu YH, Hess RA, Song SZ, Zhang ZB. Mouse spermatogenesis- associated protein 1 (SPATA1), an IFT20 binding partner, is an acrosomal protein. Dev Dyn, 2020, 249(4):543-555.
doi: 10.1002/dvdy.v249.4 |
[29] |
Liang YW, Pang YN, Wu Q, Hu ZF, Han X, Xu YS, Deng HT, Pan JM. FLA8/KIF3B phosphorylation regulates kinesin-II interaction with IFT-B to control IFT entry and turnaround. Dev Cell, 2014, 30(5):585-597.
doi: 10.1016/j.devcel.2014.07.019 |
[30] | Zhang SY, Liu YH, Huang Q, Yuan S, Liu H, Shi L, Yap YT, Li W, Zhen JK, Zhang L, Hess RA, Zhang ZB. Murine germ cell-specific disruption of Ift172 causes defects in spermiogenesis and male fertility. Reproduction, 2020, 159(4):409-421. |
[31] | Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech, 2010, 73(4):279-319. |
[32] |
Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction, 2016, 151(4):R43-54.
doi: 10.1530/REP-15-0310 |
[33] |
Yang H, Huang K. Dissecting the vesicular trafficking function of IFT subunits. Front Cell Dev Biol, 2020, 7:352.
doi: 10.3389/fcell.2019.00352 |
[34] |
Absalon S, Blisnick T, Kohl L, Toutirais G, Doré G, Julkowska D, Tavenet A, Bastin P. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell, 2008, 19(3):929-944.
doi: 10.1091/mbc.e07-08-0749 |
[35] |
Zhu B, Zhu X, Wang LM, Liang YW, Feng QF, Pan JM. Functional exploration of the IFT-A complex in intraflagellar transport and ciliogenesis. PLoS Genet, 2017, 13(2):e1006627.
doi: 10.1371/journal.pgen.1006627 |
[36] | Wang X, Sha YW, Wang WT, Cui YQ, Chen J, Yan W, Hou XT, Mei LB, Yu CC, Wang JH. Novel IFT140 variants cause spermatogenic dysfunction in humans. Mol Genet Genomic Med, 2019, 7(9):e920. |
[37] |
Zhang Y, Liu H, Li W, Zhang ZG, Zhang SY, Teves ME, Stevens C, Foster JA, Campbell GE, Windle JJ, Hess RA, Pazour GJ, Zhang ZB. Intraflagellar transporter protein 140 (IFT140), a component of IFT-A complex, is essential for male fertility and spermiogenesis in mice. Cytoskeleton (Hoboken), 2018, 75(2):70-84.
doi: 10.1002/cm.21427 pmid: 29236364 |
[38] |
Hirano T, Katoh Y, Nakayama K. Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors. Mol Biol Cell, 2017, 28(3):429-439.
doi: 10.1091/mbc.e16-11-0813 |
[39] |
Ni XQ, Wang JJ, Lv MR, Liu CY, Zhong YD, Tian SX, Wu H, Cheng HR, Gao Y, Tan Q, Chen BL, Li Q, Song B, Wei ZL, Zhou P, He XJ, Zhang F, Cao YX. A novel homozygous mutation in WDR19 induces disorganization of microtubules in sperm flagella and nonsyndromic asthenoteratospermia. J Assist Reprod Genet, 2020, 37(6):1431-1439.
doi: 10.1007/s10815-020-01770-1 |
[40] |
Li W, Mukherjee A, Wu JH, Zhang L, Teves ME, Li HF, Nambiar S, Henderson SC, Horwitz AR, Strauss JF III, Fang XJ, Zhang ZB. Sperm associated antigen 6 (SPAG6) regulates fibroblast cell growth, morphology, migration and ciliogenesis. Sci Rep, 2015, 5:16506.
doi: 10.1038/srep16506 |
[41] |
Liem KF Jr, Ashe A, He M, Satir P, Moran J, Beier D, Wicking C, Anderson KV. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J Cell Biol, 2012, 197(6):789-800.
doi: 10.1083/jcb.201110049 |
[42] |
Mykytyn K, Mullins RF, Andrews M, Chiang AP, Swiderski RE, Yang BL, Braun T, Casavant T, Stone EM, Sheffield VC. Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci USA, 2004, 101(23):8664-8669.
doi: 10.1073/pnas.0402354101 |
[43] |
Liu WJ, He XJ, Yang SM, Zouari R, Wang JX, Wu H, Kherraf ZE, Liu CY, Coutton C, Zhao R, Tang DD, Tang SY, Lv MR, Fang YY, Li WY, Li H, Zhao JY, Wang X, Zhao SM, Zhang JJ, Arnoult C, Jin L, Zhang ZG, Ray PF, Cao YX, Zhang F. Bi-allelic mutations in TTC21A induce asthenoteratospermia in humans and mice. Am J Hum Genet, 2019, 104(4):738-748.
doi: 10.1016/j.ajhg.2019.02.020 |
[44] |
Tran PV, Haycraft CJ, Besschetnova TY, Turbe-Doan A, Stottmann RW, Herron BJ, Chesebro AL, Qiu HY, Scherz PJ, Shah JV, Yoder BK, Beier DR. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat Genet, 2008, 40(4):403-410.
doi: 10.1038/ng.105 |
[45] |
Huynh Cong E, Bizet AA, Boyer O, Woerner S, Gribouval O, Filhol E, Arrondel C, Thomas S, Silbermann F, Canaud G, Hachicha J, Ben Dhia N, Peraldi MN, Harzallah K, Iftene D, Daniel L, Willems M, Noel LH, Bole-Feysot C, Nitschké P, Gubler MC, Mollet G, Saunier S, Antignac C. A homozygous missense mutation in the ciliary gene TTC21B causes familial FSGS. J Am Soc Nephrol, 2014, 25(11):2435-2443.
doi: 10.1681/ASN.2013101126 |
[46] |
Davis EE, Zhang Q, Liu Q, Diplas BH, Davey LM, Hartley J, Stoetzel C, Szymanska K, Ramaswami G, Logan CV, Muzny DM, Young AC, Wheeler DA, Cruz P, Morgan M, Lewis LR, Cherukuri P, Maskeri B, Hansen NF, Mullikin JC, Blakesley RW, Bouffard GG; NISC Comparative Sequencing Program, Gyapay G, Rieger S, Tönshoff B, Kern I, Soliman NA, Neuhaus TJ, Swoboda KJ, Kayserili H, Gallagher TE, Lewis RA, Bergmann C, Otto EA, Saunier S, Scambler PJ, Beales PL, Gleeson JG, Maher ER, Attié-Bitach T, Dollfus H, Johnson CA, Green ED, Gibbs RA, Hildebrandt F, Pierce EA, Katsanis N. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet, 2011, 43(3):189-196.
doi: 10.1038/ng.756 |
[1] | Xiangjiang Lv, Jing Guo, Ge Lin. Novel mutations in TRIP13 lead to female infertility with oocyte maturation arrest [J]. Hereditas(Beijing), 2023, 45(6): 514-525. |
[2] | Lu Yuan, Tingting Ge, Changmin Niu, Wenhua Xu, Ying Zheng. Regulation of histone-to-protamine transition during spermiogenesis [J]. Hereditas(Beijing), 2021, 43(12): 1121-1131. |
[3] | Shuyuan Liu,Changjun Zhang,Haiying Peng,Xiaoqin Huang,Hao Sun,Keqin Lin,Kai Huang,Jiayou Chu,Zhaoqing Yang. Association study of telomere length with idiopathic male infertility [J]. HEREDITAS(Beijing), 2015, 37(11): 1137-1142. |
[4] | Yuanyuan Zhang, Qiang Du, Xiaoliang Liu, Wanting Cui, Rong He, Yanyan Zhao. Screening of azoospermia factor microdeletions on Y chromosome in infertile men by QF-PCR [J]. HEREDITAS(Beijing), 2014, 36(6): 552-557. |
[5] | ZHANG Jun-Fang ZHU Hua-Bin ZHANG Liu-Guang HAO Hai-Sheng ZHAO Xue-Ming QIN Tong LU Yong-Qiang WANG Dong. Advance on research of gene expression during spermiogenesis at transcription level [J]. HEREDITAS, 2013, 35(5): 587-594. |
[6] | RUAN Jian, DU Wei-Dong. Male infertility and gene defects [J]. HEREDITAS, 2010, 32(5): 411-422. |
[7] | HUANG Di, LI Jie, HE Li-Qun. Influence of Tripterygium wilfordii on [J]. HEREDITAS, 2009, 31(9): 941-946. |
[8] | GUO Yan-He, LIU Li, CAI Rong, QIAN Cheng. piRNA: A novel member of small RNA family [J]. HEREDITAS, 2008, 30(1): 28-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号