[1] | Chandrashekar J , Hoon MA , Ryba NJP , Zuker CS . The receptors and cells for mammalian taste . Nature, 2006, 444( 7117): 288- 294. | [2] | Chaudhari N , Roper SD . The cell biology of taste . J Cell Biol, 2010, 190( 3): 285- 296. | [3] | Breslin PAS . An evolutionary perspective on food and human taste . Curr Biol, 2013, 23( 9): R409- R418. | [4] | Munger SD , Meyerhof W . The molecular basis of gustatory transduction. In: Doty R L, ed. Handbook of Olfaction and Gustation. Oxford: Wiley-Blackwell, 2015: 685- 700. | [5] | Chen XK , Gabitto M , Peng YQ , Ryba NJP , Zuker CS . A gustotopic map of taste qualities in the mammalian brain . Science, 2011, 333( 6047): 1262- 1266. | [6] | Fujikura K . Multiple loss-of-function variants of taste receptors in modern humans . Sci Rep, 2015, 5: 12349. | [7] | Wang XX , Thomas SD , Zhang JZ . Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes . Hum Mol Genet, 2004, 13( 21): 2671- 2678. | [8] | Feng P , Zheng JS , Rossiter SJ , Wang D , Zhao HB . Massive losses of taste receptor genes in toothed and baleen whales . Genome Biol Evol, 2014, 6( 6): 1254- 65. | [9] | Zhao HB , Li JW , Zhang JZ . Molecular evidence for the loss of three basic tastes in penguins . Curr Biol, 2015, 25( 4): R141- R142. | [10] | Behrens M , Korsching SI , Meyerhof W . Tuning properties of avian and frog bitter taste receptors dynamically fit gene repertoire sizes . Mol Biol Evol, 2014, 31( 12): 3216- 3227. | [11] | Hayakawa T , Suzuki-Hashido N , Matsui A , Go Y . Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade . Mol Biol Evol, 2014, 31( 8): 2018- 2031. | [12] | Zhong HM , Shang S , Wu XX , Chen J , Zhu WC , Yan JK , Li HT , Zhang HH . Genomic evidence of bitter taste in snakes and phylogenetic analysis of bitter taste receptor genes in reptiles . PeerJ, 2017, 5: e3708. | [13] | Baldwin MW , Toda Y , Nakagita T , O'Connell MJ, Klasing KC, Misaka T, Edwards SV, Liberles SD. Sensory biology. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor . Science, 2014, 345( 6199): 929- 933. | [14] | Li DY , Zhang JZ . Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire . Mol Biol Evol, 2014, 31( 2): 303- 309. | [15] | Dong D , Jones G , Zhang SY . Dynamic evolution of bitter taste receptor |
[1] |
Chaofan Xing, Mintao Wang, Lei Wang, Xin Shen.
Progress on the mechanism of left-right asymmetrical patterning in bilaterians
[J]. Hereditas(Beijing), 2023, 45(6): 488-500.
|
[2] |
Ben Wang, Si Li, Qing-Feng Wu, Wenhui Mu.
Ketogenic diet promotes the proliferation of oligodendrocyte precursor cells in ME region by activating fatty acid oxidation
[J]. Hereditas(Beijing), 2023, 45(5): 425-434.
|
[3] |
Mingliang Jiang, Hong Lang, Xiaonan Li, Ye Zu, Jing Zhao, Shenling Peng, Zhen Liu, Zongxiang Zhan, Zhongyun Piao.
Progress on plant orphan genes
[J]. Hereditas(Beijing), 2022, 44(8): 682-694.
|
[4] |
Zequan Zheng, Qiaomei Fu, Yichen Liu.
Exploration of adaptation, evolution and domestication of fermentation microorganisms by applying ancient DNA technology
[J]. Hereditas(Beijing), 2022, 44(5): 414-423.
|
[5] |
Shanshan Gao, Jinliang Li, Jiani Yang, Tong Zhou, Rui Liu, Xiaoping Wang, Li Yu.
Progresses on adaptive evolution of gliding and flying ability in mammals
[J]. Hereditas(Beijing), 2022, 44(1): 46-58.
|
[6] |
Shan Li, Yunzhi Huang, Xueying Liu, Xiangdong Fu.
Genetic improvement of nitrogen use efficiency in crops
[J]. Hereditas(Beijing), 2021, 43(7): 629-641.
|
[7] |
Hengxing Ba, Pengfei Hu, Chunyi Li.
Progress on deer genome research
[J]. Hereditas(Beijing), 2021, 43(4): 308-322.
|
[8] |
Menggang Lv, Aijia Liu, Qingwei Li, Peng Su.
Progress on the origin, function and evolutionary mechanism of RHR transcription factor family
[J]. Hereditas(Beijing), 2021, 43(3): 215-225.
|
[9] |
Yuxing Zhang, Hong Wu, Li Yu.
Progress on coat color regulation mechanism and its association with the adaptive evolution in mammals
[J]. Hereditas(Beijing), 2021, 43(2): 118-133.
|
[10] |
Yigao Zhu, Jun Li, Yue Pang, Qingwei Li.
Lamprey: an important animal model of evolution and disease research
[J]. Hereditas(Beijing), 2020, 42(9): 847-857.
|
[11] |
Linan Zhao, Na Wang, Guoliang Yang, Xianbin Su, Zeguang Han.
A method for reliable detection of genomic point mutations based on single-cell target-sequencing
[J]. Hereditas(Beijing), 2020, 42(7): 703-712.
|
[12] |
Fengyue Hu, Kejian Wang.
The STEME system: a novel tool for directed evolution in vivo
[J]. Hereditas(Beijing), 2020, 42(3): 231-235.
|
[13] |
Lianchao Tang, Feng Gu.
Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM
[J]. Hereditas(Beijing), 2020, 42(3): 236-249.
|
[14] |
Zhichao Mei, Zhujun Wei, Jiahui Yu, Fengdan Ji, Linan Xie.
Multi-omics association analysis revealed the role and mechanism of epialleles in environmental adaptive evolution of Arabidopsis thaliana
[J]. Hereditas(Beijing), 2020, 42(3): 321-331.
|
[15] |
Wei Peng, Mengjie Feng, Hao Chen, Baoyu Han.
Progress on genome sequencing of Dipteran insects
[J]. Hereditas(Beijing), 2020, 42(11): 1093-1109.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|