Hereditas(Beijing) ›› 2025, Vol. 47 ›› Issue (6): 681-693.doi: 10.16288/j.yczz.24-295
• Research Article • Previous Articles Next Articles
Zuming Zhang1(), Hao Zhou2, Xuezhi Huang2, Duoyue Zhang2, Jiayi Zhang2, Yu Lin2, Liwei Fang2, Xiuchang Zhang1, Yujun Cui2, Yarong Wu2(
), Yanjun Li3(
)
Received:
2024-10-16
Revised:
2024-12-18
Online:
2025-06-20
Published:
2025-01-10
Contact:
Yarong Wu, Yanjun Li
E-mail:13933396966@163.com;wuyarong525@126.com;liyanjun1230@163.com
Supported by:
Zuming Zhang, Hao Zhou, Xuezhi Huang, Duoyue Zhang, Jiayi Zhang, Yu Lin, Liwei Fang, Xiuchang Zhang, Yujun Cui, Yarong Wu, Yanjun Li. Study on population genomics of Bacillus anthracis based on multiple types of genetic variations[J]. Hereditas(Beijing), 2025, 47(6): 681-693.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Statistics of SNP and Indel variation types identified in 1,347 B. anthracis strains"
变异 | 突变类型 | 突变个数 | 占比 | 总计* |
---|---|---|---|---|
SNP | 同义突变 | 6,279 | 23.58% | 26,640 (26,635) |
非同义突变 | 14,992 | 56.28% | ||
无义突变 | 741 | 2.78% | ||
假基因 | 25 | 0.1% | ||
基因间区 | 4,603 | 17.26% | ||
Indel | 移码突变 | 6,666 | 60.59% | 11,002 (9,997) |
非移码突变 | 894 | 8.13% | ||
假基因 | 31 | 0.28% | ||
基因间区 | 3,411 | 31.00% |
Table 2
Statistics of genes disrupted by inversion events"
编号 | 突变序列 | 参考序列 | 基因 | 基因产物 |
---|---|---|---|---|
INV1-1 | GCA_000832665.1 | GCA_000008445.1 | 基因间区 | − |
INV1-2 | GCA_000832665.1 | GCA_000008445.1 | rrsK | 16S ribosomal RNA |
INV2-1 | GCA_000021445.1 | GCA_000008445.1 | GBAA_0438 | Putative prophage LambdaBa04, DnaD replication protein |
INV2-2 | GCA_000021445.1 | GCA_000008445.1 | GBAA_4120 | Putative prophage LambdaBa02, DNA replication protein DnaC |
INV3-1 | GCA_000832565.1 | GCA_000008445.1 | GBAA_5432 | Transcription antiterminator, LytR family |
INV3-2 | GCA_000832565.1 | GCA_000008445.1 | GBAA_5509 | UDP-N-acetylglucosamine 2-epimerase |
INV4-1 | GCA_024396795.1 | GCA_000008445.1 | GBAA_1799 | Proton/sodium-glutamate symporter |
INV4-2 | GCA_024396795.1 | GCA_000008445.1 | aspA | Aspartate ammonia-lyase |
INV5-1 | GCA_000833125.1 | GCA_000008445.1 | GBAA_5432 | Transcription antiterminator, LytR family |
INV5-2 | GCA_000833125.1 | GCA_000008445.1 | GBAA_5509 | UDP-N-acetylglucosamine 2-epimerase |
Table 3
Genes under positive selection in the five dN/dS models and three genes under strong selective pressure"
基因编号 | 基因 | dN/dS (GLPB;GLWL;GMYN; GNG;GYN) | 趋同 位点 | 固定 位点 | 突变 密度# | 基因产物 |
---|---|---|---|---|---|---|
GBAA_RS00580* | rpoB | 4.8;2.5;2.6;2.7;2.5 | 4 | 3 | 14.4 | DNA-directed RNA polymerase subunit beta |
GBAA_RS00605* | fusA | 2.4;1.4;1.5;1.5;1.7 | 2 | 1 | 17.8 | 延伸因子G |
GBAA_RS02100 | topB | 2.1;1.0;1.2;1.1;1.2 | 0 | 1 | 6.4 | DNA拓扑异构酶 |
GBAA_RS02855 | NA | 3.8;1.9;1.8;2.1;1.8 | 0 | 1 | 7.0 | Glutamate synthase-related protein |
GBAA_RS03475 | NA | 1.3;1.5;1.5;1.6;1.5 | 0 | 1 | 19.8 | Alanine/glycine:cation symporter family protein |
GBAA_RS04590 | NA | 3.0;1.5;1.6;1.6;1.9 | 0 | 4 | 9.5 | 过氧化氢酶 |
GBAA_RS27185* | spo0F | − | 3 | 1 | 84.0 | Sporulation initiation phosphotransferase Spo0F |
GBAA_RS11385* | NA | − | 8 | 1 | 99.6 | BA2291 family sporulation histidine kinase |
[1] |
Dragon DC, Rennie RP. The ecology of anthrax spores: tough but not invincible. Can Vet J, 1995, 36(5): 295-301.
pmid: 7773917 |
[2] |
Pilo P, Frey J. Bacillus anthracis: molecular taxonomy, population genetics, phylogeny and patho-evolution. Infect Genet Evol, 2011, 11(6): 1218-1224.
pmid: 21640849 |
[3] | Anthrax in humans and animals. Geneva: World Health Organization, 2008. |
[4] | He X, Huang LY. Advanced in pathogenesis of Bacillus anthracis. Microbiol China, 2004, 31(4): 101-105. |
何湘, 黄留玉. 炭疽杆菌致病性研究进展. 微生物学通报, 2004, 31(4):101-105. | |
[5] | World Health Organization. Disease outbreak news. anthrax in zambia, 2023. |
[6] |
Wang DS, Wang BX, Zhu L, Wu SY, Lyu YF, Feng EL, Pan C, Jiao L, Cui YJ, Liu XK, Wang HL. Genotyping and population diversity of Bacillus anthracis in China based on MLVA and canSNP analysis. Microbiol Res, 2020, 233: 126414.
pmid: 31981903 |
[7] | Wang BX, Smith KL, Keys C, CokerP, Keimp, Jones MH. Molecular epidemiology of Bacillus anthracis in China. Prog Microbiol Immunol, 2002, 30(1): 14-17. |
王秉翔, Smith KL, Keys C, CokerP, Keimp, Jones MH. 中国的炭疽杆菌DNA分型及其地理分布. 微生物学免疫学进展, 2002, 30(1): 14-17. | |
[8] | China Daily. Anthrax outbreak closes cattle farm in Shandong. (2024-8-2) [2025-1-7]. https://www.chinadaily.com.cn/a/202408/02/WS66acc0bda3104e74fddb83f5.html. |
[9] |
Shangkuan YH, Yang JF, Lin HC, Shaio MF. Comparison of PCR-RFLP, ribotyping and ERIC-PCR for typing Bacillus anthracis and Bacillus cereus strains. J Appl Microbiol, 2000, 89(3): 452-462.
pmid: 11021577 |
[10] |
Jensen GB, Fisker N, Sparsø T, Andrup L. The possibility of discriminating within the Bacillus cereus group using gyrB sequencing and PCR-RFLP. Int J Food Microbiol, 2005, 104(1): 113-120.
pmid: 16005534 |
[11] |
Daffonchio D, Borin S, Frova G, Gallo R, Mori E, Fani R, Sorlini C. A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis. Appl Environ Microbiol, 1999, 65(3): 1298-1303.
pmid: 10049896 |
[12] |
Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø AB. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence. Appl Environ Microbiol, 2000, 66(6): 2627-2630.
pmid: 10831447 |
[13] |
Jackson PJ, Hill KK, Laker MT, Ticknor LO, Keim P. Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis. J Appl Microbiol, 1999, 87(2): 263-269.
pmid: 10475963 |
[14] |
Hill KK, Ticknor LO, Okinaka RT, Asay M, Blair H, Bliss KA, Laker M, Pardington PE, Richardson AP, Tonks M, Beecher DJ, Kemp JD, Kolstø AB, Wong ACL, Keim P, Jackson PJ. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl Environ Microbiol, 2004, 70(2): 1068-1080.
pmid: 14766590 |
[15] | Wu SY, Liu XK, Song L, Wei H, Wang HL. Progress on the molecular genotyping techniques of Bacillus anthracis. Lett Biotechnol, 2011, 22(5): 738-742. |
吴松羽, 刘先凯, 宋丽, 魏华, 王恒樑. 炭疽芽孢杆菌分子分型研究进展. 生物技术通讯, 2011, 22(5): 738-742. | |
[16] |
Keim P, Price LB, Klevytska AM, Smith KL, Schupp JM, Okinaka R, Jackson PJ, Hugh-Jones ME. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol, 2000, 182(10): 2928-2936.
pmid: 10781564 |
[17] |
Limmathurotsakul D, Golding N, Dance DAB, Messina JP, Pigott DM, Moyes CL, Rolim DB, Bertherat E, Day NPJ, Peacock SJ, Hay SI. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol, 2016, 1(1): 15008.
pmid: 27571754 |
[18] |
Chewapreecha C, Holden MTG, Vehkala M, Välimäki N, Yang ZR, Harris SR, Mather AE, Tuanyok A, De Smet B, Le Hello S, Bizet C, Mayo M, Wuthiekanun V, Limmathurotsakul D, Phetsouvanh R, Spratt BG, Corander J, Keim P, Dougan G, Dance DAB, Currie BJ, Parkhill J, Peacock SJ. Global and regional dissemination and evolution of Burkholderia pseudomallei. Nat Microbiol, 2017, 2: 16263.
pmid: 28112723 |
[19] |
Yang C, Pei XY, Wu YR, Yan L, Yan YF, Song YQ, Coyle NM, Martinez-Urtaza J, Quince C, Hu QH, Jiang M, Feil E, Yang DJ, Song YJ, Zhou DS, Yang RF, Falush D, Cui YJ. Recent mixing of Vibrio parahaemolyticus populations. ISME J, 2019, 13(10): 2578-2588.
pmid: 31235840 |
[20] | Zheng HY, Yan L, Yang C, Wu YR, Qin JL, Hao TY, Yang DJ, Guo YC, Pei XY, Zhao TY, Cui YJ. Population genomics study of Vibrio alginolyticus. Hereditas(Beijing), 2021, 43(4): 350-361. |
郑宏源, 闫琳, 杨超, 武雅蓉, 秦婧靓, 郝彤宇, 杨大进, 郭云昌, 裴晓燕, 赵彤言, 崔玉军. 溶藻弧菌群体基因组学研究. 遗传, 2021, 43(4): 350-361. | |
[21] |
Van Ert MN, Easterday WR, Huynh LY, Okinaka RT, Hugh-Jones ME, Ravel J, Zanecki SR, Pearson T, Simonson TS, U'Ren JM, Kachur SM, Leadem-Dougherty RR, Rhoton SD, Zinser G, Farlow J, Coker PR, Smith KL, Wang BX, Kenefic LJ, Fraser-Liggett CM, Wagner DM, Keim P. Global genetic population structure of Bacillus anthracis. PLoS One, 2007, 2(5): e461.
pmid: 17520020 |
[22] |
Bruce SA, Schiraldi NJ, Kamath PL, Easterday WR, Turner WC. A classification framework for Bacillus anthracis defined by global genomic structure. Evol Appl, 2020, 13(5): 935-944.
pmid: 32431744 |
[23] |
Wu YR, Hao TY, Qian XW, Zhang XLL, Song YJ, Yang RF, Cui YJ. Small insertions and deletions drive genomic plasticity during adaptive evolution of Yersinia pestis. Microbiol Spectr, 2022, 10(3): e0224221.
pmid: 35438532 |
[24] |
Gonzalo-Asensio J, Pérez I, Aguiló N, Uranga S, Picó A, Lampreave C, Cebollada A, Otal I, Samper S, Martín C. New insights into the transposition mechanisms of IS6110 and its dynamic distribution between Mycobacterium tuberculosis complex lineages. PLoS Genet, 2018, 14(4): e1007282.
pmid: 29649213 |
[25] |
Keim P, Gruendike JM, Klevytska AM, Schupp JM, Challacombe J, Okinaka R. The genome and variation of Bacillus anthracis. Mol Aspects Med, 2009, 30(6): 397-405.
pmid: 19729033 |
[26] |
Okinaka RT, Price EP, Wolken SR, Gruendike JM, Chung WK, Pearson T, Xie G, Munk C, Hill KK, Challacombe J, Ivins BE, Schupp JM, Beckstrom-Sternberg SM, Friedlander A, Keim P. An attenuated strain of Bacillus anthracis (CDC 684) has a large chromosomal inversion and altered growth kinetics. BMC Genomics, 2011, 12(1): 477.
pmid: 21962024 |
[27] |
Furuta Y, Harima H, Ito E, Maruyama F, Ohnishi N, Osaki K, Ogawa H, Squarre D, Hang'Ombe BM, Higashi H. Loss of bacitracin resistance due to a large genomic deletion among Bacillus anthracis strains. mSystems, 2018, 3(5): e00182-18.
pmid: 30417107 |
[28] |
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.
pmid: 24695404 |
[29] |
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol, 2012, 19(5): 455-477.
pmid: 22506599 |
[30] |
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun, 2018, 9(1): 5114.
pmid: 30504855 |
[31] |
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol, 1990, 215(3): 403-410.
pmid: 2231712 |
[32] |
Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics, 2003, 10(3): 1-18.
pmid: 18428693 |
[33] | Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Ithaca: Cornell University Library, arXiv.org, 2013. |
[34] |
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, Depristo MA. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics, 2013, 43(1): 11.10.1-11.10.33.
pmid: 25431634 |
[35] |
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 1999, 27(2): 573-580.
pmid: 9862982 |
[36] |
Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol, 2015, 11(2): e1004041.
pmid: 25675341 |
[37] |
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2015, 32(1): 268-274.
pmid: 25371430 |
[38] |
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49(W1): W293-W296.
pmid: 33885785 |
[39] |
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30(14): 2068-2069.
pmid: 24642063 |
[40] |
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 2015, 31(22): 3691-3693.
pmid: 26198102 |
[41] |
Li RQ, Li YR, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics, 2008, 24(5): 713-714.
pmid: 18227114 |
[42] |
Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol, 2015, 16(1): 294.
pmid: 26714481 |
[43] |
Goel M, Sun HQ, Jiao WB, Schneeberger K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol, 2019, 20(1): 277.
pmid: 31842948 |
[44] |
Kolmogorov M, Armstrong J, Raney BJ, Streeter I, Dunn M, Yang FT, Odom D, Flicek P, Keane TM, Thybert D, Paten B, Pham S. Chromosome assembly of large and complex genomes using multiple references. Genome Res, 2018, 28(11): 1720-1732.
pmid: 30341161 |
[45] |
Minkin I, Medvedev P. Scalable multiple whole-genome alignment and locally collinear block construction with SibeliaZ. Nat Commun, 2020, 11(1): 6327.
pmid: 33303762 |
[46] |
Crispell J, Balaz D, Gordon SV. HomoplasyFinder: a simple tool to identify homoplasies on a phylogeny. Microb Genom, 2019, 5(1): e000245.
pmid: 30663960 |
[47] |
Wang DP, Zhang YB, Zhang Z, Zhu J, Yu J. KaKs_ Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics, 2010, 8(1): 77-80.
pmid: 20451164 |
[48] |
Guttenplan SB, Blair KM, Kearns DB. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet, 2010, 6(12): e1001243.
pmid: 21170308 |
[49] |
Radeck J, Lautenschlager N, Mascher T. The essential UPP phosphatase pair BcrC and UppP connects cell wall homeostasis during growth and sporulation with cell envelope stress response in Bacillus subtilis. Front Microbiol, 2017, 8: 2403.
pmid: 29259598 |
[50] |
Dobihal GS, Flores-Kim J, Roney IJ, Wang XD, Rudner DZ. The WalR-WalK signaling pathway modulates the activities of both CwlO and LytE through control of the peptidoglycan deacetylase PdaC in Bacillus subtilis. J Bacteriol, 2022, 204(2): e0053321.
pmid: 34871030 |
[51] |
Niemann V, Koch-Singenstreu M, Neu A, Nilkens S, Götz F, Unden G, Stehle T. The NreA protein functions as a nitrate receptor in the staphylococcal nitrate regulation system. J Mol Biol, 2014, 426(7): 1539-1553.
pmid: 24389349 |
[52] |
Martín M, Mendoza D. Regulation of Bacillus subtilis DesK thermosensor by lipids. Biochem J. 2013, 451(2): 269-275.
pmid: 23356219 |
[53] |
Hughes D. Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes. Genome Biol, 2000, 1(6): REVIEWS0006.
pmid: 11380986 |
[54] |
Moeller R, Vlašić I, Reitz G, Nicholson WL. Role of altered rpoB alleles in Bacillus subtilis sporulation and spore resistance to heat, hydrogen peroxide, formaldehyde, and glutaraldehyde. Arch Microbiol, 2012, 194(9): 759-767.
pmid: 22484477 |
[55] |
Li MC, Lu J, Lu Y, Xiao TY, Liu HC, Lin SQ, Xu D, Li GL, Zhao XQ, Liu ZG, Zhao LL, Wan KL. rpoB mutations and effects on rifampin resistance in mycobacterium tuberculosis. Infect Drug Resist, 2021, 14: 4119-4128.
pmid: 34675557 |
[56] | Hu ZQ, Liu YW, Zhou W, Gao LL, Chen JY, Xie WS, Zhou DW, Zhang SF, Zhong BT. Relationship between rpoB mutations and the levels of rifampicin resistance in M. tuberculosis. Chin J Zoonoses, 2016, 32(1): 39-50. |
胡族琼, 刘燕文, 周文, 高璐璐, 陈俊宇, 谢伟胜, 周德旺, 曾少芳, 钟炳棠. 结核分枝杆菌rpoB基因突变特征与利福平耐药水平关系的研究. 中国人兽共患病学报, 2016, 32(1): 39-50. | |
[57] |
Fortnagel P, Freese EB. Morphological stages of Bacillus subtilis sporulation and resistance to fusidic acid. J Gen Microbiol, 1977, 101(2): 299-306.
pmid: 411887 |
[58] |
Hajikhani B, Goudarzi M, Kakavandi S, Amini S, Zamani S, van Belkum A, Goudarzi H, Dadashi M. The global prevalence of fusidic acid resistance in clinical isolates of Staphylococcus aureus: a systematic review and meta-analysis. Antimicrob Resist Infect Control, 2021, 10(1): 75.
pmid: 33933162 |
[59] |
Kobayashi H, Kobayashi K, Kobayashi Y. Isolation and characterization of fusidic acid-resistant, sporulation- defective mutants of Bacillus subtilis. J Bacteriol, 1977, 132(1): 262-269.
pmid: 410781 |
[60] |
Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. Environ Microbiol Rep, 2014, 6(3): 212-225.
pmid: 24983526 |
[1] | Liang Jin, Yujie Chen, Yongjun Chen. Advances in genetic etiology, diagnosis and treatment of developmental and epileptic encephalopathy [J]. Hereditas(Beijing), 2023, 45(7): 553-567. |
[2] | Ke Mao, Ziqiu Meng, Yongbiao Zhang. Progress on the regulation of neural crest and the genetics in craniofacial development [J]. Hereditas(Beijing), 2022, 44(12): 1089-1102. |
[3] | Hengxing Ba, Pengfei Hu, Chunyi Li. Progress on deer genome research [J]. Hereditas(Beijing), 2021, 43(4): 308-322. |
[4] | Hongyuan Zheng, Lin Yan, Chao Yang, Yarong Wu, Jingliang Qin, Tongyu Hao, Dajin Yang, Yunchang Guo, Xiaoyan Pei, Tongyan Zhao, Yujun Cui. Population genomics study of Vibrio alginolyticus [J]. Hereditas(Beijing), 2021, 43(4): 350-361. |
[5] | Rui Shi, Yi Zhang, Yachun Wang, Tao Huang, Guochang Lu, Tao Yue, Zhenxi Lu, Xixia Huang, Xinpu Wei, Shutang Feng, Jun Chen, Wulan Kagedeer, Ruxianguli Abulizi, Nuerhumaer Muhetaer. The evaluation of genomic homozygosity for Xinjiang inbred population by SNP panels [J]. Hereditas(Beijing), 2020, 42(5): 493-505. |
[6] | Gang Liu,Feizhou Sun,Fangxian Zhu,Haiyong Feng,Xu Han. Runs of homozygosity and its application on livestock genome study [J]. Hereditas(Beijing), 2019, 41(4): 304-317. |
[7] | Weimin Kuang, Li Yu. Mitogenome assembly strategies and software applications in the genome era [J]. Hereditas(Beijing), 2019, 41(11): 979-993. |
[8] | Xianwei Yang, Ruifu Yang, Yujun Cui. Homologous recombination among bacterial genomes: the measurement and identification [J]. HEREDITAS(Beijing), 2016, 38(2): 137-143. |
[9] | Fei Chang, Wenchao Zou, Fangluan Gao, Jianguo Shen, Jiasui Zhan. Comparative analysis of population genetic structure of Potato virus Y from different hosts [J]. HEREDITAS(Beijing), 2015, 37(3): 292-301. |
[10] | Jing Jiang, Qian Qian, Bojun Ma, Zhenyu Gao. Epigenetic variation and its application in crop improvement [J]. HEREDITAS(Beijing), 2014, 36(5): 469-475. |
[11] | Qianzhi Shao, Yi Jiang, Jinyu Wu. Whole-genome sequencing and its application in the research and diagnoses of genetic diseases [J]. Hereditas(Beijing), 2014, 36(11): 1087-1098. |
[12] | WU Zhi-Jun, JIN Wei, ZHANG Feng-Ru, LIU Yan. Recent advances in natriuretic peptide family genes and cardiovas-cular diseases [J]. HEREDITAS, 2012, 34(2): 127-133. |
[13] | WANG Yan, XIE Hui, CHEN Li-Ping. Progress in research on plant graft-induced genetic variation [J]. HEREDITAS, 2011, 33(6): 585-590. |
[14] | LI Yang-Hui, YUAN Cui-Beng, ZHANG Chen, LI Wei, NA Hai-Xiang, CHANG Ru-Tian, QIU Li-Juan. Genetic variation of SNP loci based on candidate gene for resistance to soybean cyst nematode [J]. HEREDITAS, 2009, 31(12): 1259-1264. |
[15] | XU Ying-Jie, WANG Lv-Ya. Research progress on the association between genetic variations in lipid metabolism and premature coronary artery disease [J]. HEREDITAS, 2008, 30(6): 671-676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号