Hereditas(Beijing) ›› 2025, Vol. 47 ›› Issue (3): 351-365.doi: 10.16288/j.yczz.24-243
• Research Article • Previous Articles Next Articles
Chaofei Han1,2(), Ling Chen5, Yuanxiu Wang2, Qian Cheng2, Sheng Zuo2, Huabin Liu4(
), Chengliang Wang2,3(
)
Received:
2024-07-11
Revised:
2024-11-09
Online:
2025-01-16
Published:
2025-01-16
Contact:
Huabin Liu, Chengliang Wang
E-mail:2535022780@qq.com;liuhb@ahstu.edu.cn;clwang@ahnu.edu.cn
Supported by:
Chaofei Han, Ling Chen, Yuanxiu Wang, Qian Cheng, Sheng Zuo, Huabin Liu, Chengliang Wang. Mining and analysis of key genes related to rice seed longevity in NJ9108 based on transcriptomics[J]. Hereditas(Beijing), 2025, 47(3): 351-365.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Primers for qRT-PCR used in this study"
基因ID | 正向引物(5′→3′) | 反向引物(5′→3′) |
---|---|---|
Os08g0448000 | GCCGTCGTCCCAATGAAG | GTAGAACACCACCTGCTTTGC |
Os08g0270400 | GCAGGAGCACTGGAGATGA | ATCTCGTGCCCAGGAACAA |
Os01g0962700 | CGTCAAACTGGCCGGTG | GCGTCGAGGTTGAGCTTG |
Os06g0547400 | CAATGGATGTGACGGCTCG | CCCACCCAGCAGGTTGAC |
Os04g0513900 | GGCGTTCGAAACTCCGTG | AAAGTGGGCATCGCTGTTG |
Os05g0366600 | TACAGGGACAAGTACCAGGCTA | CCAGTATCCAACCGACCATG |
Os08g0473600 | GCATCTTCTACGACCATGTGTTC | CACCTTGCCGTCGATCATG |
Os09g0457600 | AGTACCCTGCATTTTCTACGACC | CGTCATACCGTGTCCCAATC |
Os07g0624600 | CGACTGGATGGAGAAGCACC | CCGCCTCTCTCATTTCGTCG |
Os09g0397300 | AGGCTGAAGAGAGATGCAGAATG | GGCCCTTGCTTACACCCTG |
Os03g0633800 | CCATGTTCGTCTGCTTCTCC | GCTGGTGAACATGTCGAAAG |
Os06g0166500 | AATGGGCAACAAGAGGAGG | GCCCATCCTCTTGGTTAGTG |
Os01g0764800 | CACCGAGTTCCTCACCAGC | CCTGGCACGTACAAGTTCATG |
Os04g0691100 | TCTCGCGCATCATGTCCG | CCCATGCTGATGCGCTTG |
Os08g0377200 | CGCCATAACGTCCGAGTG | GGTGATTTCTTCACTTCCATGAG |
Os04g0604300 | CCACCTGCTACTTCATGTCGG | CCCGTCCACCAGCACAAG |
[1] |
Leprince O, Pellizzaro A, Berriri S, Buitink J. Late seed maturation: drying without dying. J Exp Bot, 2017, 68(4): 827-841.
doi: 10.1093/jxb/erw363 pmid: 28391329 |
[2] | Xue F, Qu CL, Wang RL, Li H. Progress on the fever and moldy of paddy during storage. Sci Technol Food Ind, 2017, 38(12): 338-341. |
薛飞, 渠琛玲, 王若兰, 李慧. 稻谷储藏过程中发热霉变研究进展. 食品工业科技, 2017, 38(12): 338-341. | |
[3] |
Zinsmeister J, Leprince O, Buitink J. Molecular and environmental factors regulating seed longevity. Biochem J, 2020, 477(2): 305-323.
doi: 10.1042/BCJ20190165 pmid: 31967650 |
[4] |
Sano N, Rajjou L, North HM, Debeaujon I, Marion-Poll A, Seo M. Staying alive: molecular aspects of seed longevity. Plant Cell Physiol, 2016, 57(4): 660-674.
doi: 10.1093/pcp/pcv186 pmid: 26637538 |
[5] | Li T, Zhang YM, Wang D, Liu Y, Dirk LMA, Goodman J, Downie AB, Wang JM, Wang GY, Zhao TY. Regulation of seed vigor by manipulation of raffinose family oligosaccharides in maize and Arabidopsis thaliana. Mol Plant, 2017, 10(12): 1540-1555. |
[6] | Pirredda M, Fañanás-Pueyo I, Oñate-Sánchez L, Mira S. Seed longevity and ageing: a review on physiological and genetic factors with an emphasis on hormonal regulation. Plants (Basel), 2023, 13(1): 41. |
[7] |
Chen DF, Li YL, Fang T, Shi XL, Chen XW. Specific roles of tocopherols and tocotrienols in seed longevity and germination tolerance to abiotic stress in transgenic rice. Plant Sci, 2016, 244: 31-39.
doi: 10.1016/j.plantsci.2015.12.005 pmid: 26810451 |
[8] | He WP, Wang R, Zhang Q, Fan MX, Lyu YY, Chen S, Chen DF, Chen XW. E3 ligase ATL5 positively regulates seed longevity by mediating the degradation of ABT1 in Arabidopsis. New Phyto, 2023, 239(5): 1754-1770. |
[9] |
Wang CL, Chen S, Dong YP, Ren RJ, Chen DF, Chen XW. Chloroplastic Os3BGlu6 contributes significantly to cellular ABA pools and impacts drought tolerance and photosynthesis in rice. New Phytol, 2020, 226(4): 1042-1054.
doi: 10.1111/nph.16416 pmid: 31917861 |
[10] | Gupta R, Min CW, Choet JH, Jung JY, Jeon JS, Kim YJ, Kim JK, Kim ST. Integrated "-omics" analysis highlights the role of brassinosteroid signaling and antioxidant machinery underlying improved rice seed longevity during artificial aging treatment. Plant Physiol Biochem, 2024, 206: 108308. |
[11] |
Fenollosa G, Jené L, Munné-Bosch S. A rapid and sensitive method to assess seed longevity through accelerated aging in an invasive plant species. Plant Methods, 2020, 16: 64.
doi: 10.1186/s13007-020-00607-3 pmid: 32411273 |
[12] | Liu FZ, Li NN, Yu YY, Chen W, Yu SB, He HZ. Insights into the regulation of rice seed storability by seed tissue- specific transcriptomic and metabolic profiling. Plants (Basel), 2022, 11(12): 1570. |
[13] | Ren RJ, Wang P, Wang LN, Su JP, Sun LJ, Sun Y, Chen DF, Chen XW. Os4BGlu14, a monolignol β-Glucosidase, negatively affects seed longevity by influencing primary metabolism in rice. Plant Mol Biol, 2020, 104(4-5): 513-527. |
[14] |
MacGregor DR, Kendall SL, Florance H, Fedi F, Moore K, Paszkiewicz K, Smirnoff N, Penfield S. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytol, 2015, 205(2): 642-652.
doi: 10.1111/nph.13090 pmid: 25412428 |
[15] | Liang MX, Davis E, Gardner D, Cai XN, Wu YG. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 2006, 224(5): 1185-1196. |
[16] | Prasad CTM, Kodde J, Angenent GC, Hay FR, McNally KL, Groot SPC. Identification of the rice Rc gene as a main regulator of seed survival under dry storage conditions. Plant Cell Environ, 2023, 46(6): 1962-1980. |
[17] | 徐亮, 包维楷, 何永华. 种子贮藏物质变化及其贮藏生理. 种子, 2003, (5): 60-63. |
[18] |
Huang ZB, Ying JF, Peng LL, Sun S, Huang CW, Li C, Wang ZF, He YQ. A genome-wide association study reveals that the cytochrome b5 involved in seed reserve mobilization during seed germination in rice. Theor Appl Genet, 2021, 134(12): 4067-4076.
doi: 10.1007/s00122-021-03948-2 pmid: 34546380 |
[19] |
Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell, 2006, 126(6): 1109-1120.
doi: 10.1016/j.cell.2006.07.034 pmid: 16990135 |
[20] |
Kretzschmar T, Pelayo MA, Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, Mendioro MS, Slamet-Loedin IH, Sreenivasulu N, Bailey-Serres J, Ismail AM, Mackill DJ, Septiningsih EM. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants, 2015, 1: 15124.
doi: 10.1038/nplants.2015.124 pmid: 27250677 |
[21] | Pellizzaro A, Neveu M, Lalanne D, Vu BL, Kanno Y, Seo M, Leprince O, Buitink J. A role for auxin signaling in the acquisition of longevity during seed maturation. New Phytol, 2019, 225(1): 284-296. |
[22] | Wei YS, Peng QL, Huang YA, Chen YR, Zhao-Cheng YF, Xi XY. Advance in research on mechanism of plant seed senescence. Acta Agric Boreali-Occident Sin, 2024, 33(5): 775-786. |
魏永胜, 彭琪朗, 黄滢奥, 陈彦如, 赵程亚菲, 郗欣悦. 植物种子衰老机制研究进展. 西北农业学报, 2024, 33(5): 775-786. | |
[23] |
Yuan ZY, Fan K, Wang YT, Tian L, Zhang CP, Sun WQ, He HZ, Yu SB. OsGRETCHENHAGEN3-2 modulates rice seed storability via accumulation of abscisic acid and protective substances. Plant Physiol, 2021, 186(1): 469-482.
doi: 10.1093/plphys/kiab059 pmid: 33570603 |
[24] |
He YQ, Zhao J, Yang B, Sun S, Peng LL, Wang ZF. Indole-3-acetate beta-glucosyltransferase OsIAGLU regulates seed vigour through mediating crosstalk between auxin and abscisic acid in rice. Plant Biotechnol J, 2020, 18(9): 1933-1945.
doi: 10.1111/pbi.13353 pmid: 32012429 |
[25] | Xu MR, Huang LY, Zhang F, Zhu LH, Zhou YL, Li ZK. Genome-wide phylogenetic analysis of stress-activated protein kinase genes in rice (OsSAPKs) and expression profiling in response to Xanthomonas oryzae pv. oryzicola infection. Plant Mol Biol Rep, 2013, 31(4): 877-885. |
[26] |
Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. Differential activation of the rice sucrose nonfermenting1- related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell, 2004, 16(5): 1163-1177.
doi: 10.1105/tpc.019943 pmid: 15084714 |
[27] | Siadat SA, Moosavi SA, Sharafizadeh M. Alleviate seed ageing effects in silybum marianum by application of hormone seed priming. Not Sci Biol, 2015, 7(3): 316-321. |
[1] | Min Chen, Na Han, Yu Miao, Yujun Qiang, Wen Zhang, Pengbo Liu, Qiyong Liu, Dongmei Li. Differential transcriptome profiling of Bartonella spp. influenced by the species divergence factors [J]. Hereditas(Beijing), 2025, 47(3): 366-381. |
[2] | Heng Wei, Tianpeng Liu, Jihong He, Kongjun Dong, Ruiyu Ren, Lei Zhang, Yawei Li, Ziyi Hao, Tianyu Yang. Genome-wide identification of GRF transcription factors and their expression profile in stem meristem of broomcorn millet (Panicum miliaceum L.) [J]. Hereditas(Beijing), 2024, 46(3): 242-255. |
[3] | Xin Wen, Jin Mei, Meiyu Qian, Yidan Jiang, Juan Wang, Shibo Xu, Cuizhe Wang, Jun Zhang. Screening and analysis of GULP1 downstream target genes based on transcriptomic sequencing [J]. Hereditas(Beijing), 2024, 46(10): 860-870. |
[4] | Yan Guo, Lele Yang, Huayu Qi. Transcriptome analysis of mouse male germline stem cells reveals characteristics of mature spermatogonial stem cells [J]. Hereditas(Beijing), 2022, 44(7): 591-608. |
[5] | Min Cao, Tongda Xu. The molecular mechanism of apical hook development in dicot plant [J]. Hereditas(Beijing), 2021, 43(8): 723-736. |
[6] | Hongbo Luo, Pengbo Cao, Gangqiao Zhou. Prognostic and predictive value of a DNA methylation-driven transcriptional signature in hepatocellular carcinoma [J]. Hereditas(Beijing), 2020, 42(8): 775-787. |
[7] | Tianpei Shi,Li Zhang. Application of whole transcriptomics in animal husbandry [J]. Hereditas(Beijing), 2019, 41(3): 193-205. |
[8] | Gaohua Zhang, Shutao Yu, He Wang, Xuda Wang. Transcriptome profiling of high oleic peanut under low temperatureduring germination [J]. Hereditas(Beijing), 2019, 41(11): 1050-1059. |
[9] | Lan Ren,Rudan Xiao,Qian Zhang,Xiaomin Lou,Zhaojun Zhang,Xiangdong Fang. Synergistic regulation of the erythroid differentiation of K562 cells by KLF1 and KLF9 [J]. Hereditas(Beijing), 2018, 40(11): 998-1006. |
[10] | Yajun Liu,Feng Zhang,Hongde Liu,Xiao Sun. The application of next-generation sequencing techniques in studying transcriptional regulation in embryonic stem cells [J]. Hereditas(Beijing), 2017, 39(8): 717-725. |
[11] | Kai Wei,Lei Ma. Concept development of housekeeping genes in the high-throughput sequencing era [J]. Hereditas(Beijing), 2017, 39(2): 127-134. |
[12] | Guangqi Li, Congjiao Sun, Guiqin Wu, Fengying Shi, Aiqiao Liu, Hao Sun, Ning Yang. Transcriptome sequencing identifies potential regulatory genes involved in chicken eggshell brownness [J]. Hereditas(Beijing), 2017, 39(11): 1102-1111. |
[13] | Yongming Liu, Ling Zhang, Tao Qiu, Zhuofan Zhao, Moju Cao. Research progress on mechanisms of male sterility in plants based on high-throughput RNA sequencing [J]. Hereditas(Beijing), 2016, 38(8): 677-687. |
[14] | Xiao Zhang, Guifang Jia. RNA epigenetic modification: N6-methyladenosine [J]. HEREDITAS(Beijing), 2016, 38(4): 275-288. |
[15] | Shuaiqi Zhu, Yifu Gong, Yuqing Hang, Hao Liu, Heyu Wang. Transcriptome analysis of Dunaliella viridis [J]. HEREDITAS(Beijing), 2015, 37(8): 828-836. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号