遗传 ›› 2020, Vol. 42 ›› Issue (6): 599-612.doi: 10.16288/j.yczz.20-032
• 技术与方法 • 上一篇
秦丽丽1,2, 李毅坚1, 梁兆端1, 陈蕾1, 李文慧1, 陈超1,3,4, 黄亚灵1, 张乐1,3,4, 刘松明1,3,4, 邱思1,4, 葛玉萍1, 彭文婷1,3, 林欣欣1,4, 张秀清1,4, 董旋1(
), 李波1,4(
)
收稿日期:2020-04-10
修回日期:2020-05-15
出版日期:2020-06-20
发布日期:2020-05-19
作者简介:秦丽丽, 在读硕士研究生,专业方向:病理学和病理生理学。E-mail: veritasdoct168@163.com|李毅坚,硕士,助理研究员,研究方向:肿瘤免疫治疗。E-mail:liyijian@genomics.cn; 秦丽丽和李毅坚为并列第一作者。
基金资助:
Qin Lili1,2, Li Yijian1, Liang Zhaorui1, Dai Lei1, Li Wenhui1, Chen Chao1,3,4, Huang Yaling1, Zhang Le1,3,4, Liu Songming1,3,4, Qiu Si1,4, Ge Yuping1, Peng Wenting1,3, Lin Xinxin1,4, Zhang Xiuqing1,4, Dong Xuan1(
), Li Bo1,4(
)
Received:2020-04-10
Revised:2020-05-15
Published:2020-06-20
Online:2020-05-19
Supported by:摘要:
结直肠癌是世界高发和高致死率的恶性肿瘤。靶向新抗原的免疫治疗已被证实可以诱导癌症患者肿瘤持续消退,但这些特异性新抗原,仅适用于个体精准治疗。随着大量的高频肿瘤基因突变被发现,这些与突变相关的高频新抗原可覆盖更多人群,具有较强的临床意义。然而目前结直肠癌中是否也存在高频新抗原仍不清楚。本研究利用来源于321个结直肠癌患者的体细胞突变数据库,联合1种标准过滤和7种预测算法,筛选并获得了25个基于中国人高频分型HLA-A*1101限制性的高频新抗原,它们均具有高亲和力(IC50<50 nmol/L)和高呈递分值(>0.90);其中,除了阳性对照多肽KRAS_G12V8-16外,11个高频新抗原能够在体外诱导细胞毒性T淋巴细胞(cytotoxic T lymphocyte, CTL)分泌γ干扰素(interferon gamma, IFN-γ),证实具有免疫原性。选取免疫原性最强的新抗原C1orf170_S418G413-421及阳性对照多肽KRAS_G12V8-16体外刺激T细胞,利用流式细胞分选及单细胞转录组测序技术,获得其特异性CTL的免疫组库信息,所构建的TCR-T(T-cell receptor engineered T cell)能够识别新抗原并分泌细胞因子。以上结果表明,本研究开发了一种利用体细胞数据库预测并体外筛选验证具有免疫原性高频新抗原的方法,为结直肠癌及其他癌种的多肽、DC(dendritic cells)疫苗、TCR-like抗体、TCR-T等免疫治疗提供了重要的多肽靶点和TCR信息,具有实际的临床应用价值。
秦丽丽, 李毅坚, 梁兆端, 陈蕾, 李文慧, 陈超, 黄亚灵, 张乐, 刘松明, 邱思, 葛玉萍, 彭文婷, 林欣欣, 张秀清, 董旋, 李波. 基于体细胞突变数据库筛选免疫原性结直肠癌高频新抗原的方法[J]. 遗传, 2020, 42(6): 599-612.
Qin Lili, Li Yijian, Liang Zhaorui, Dai Lei, Li Wenhui, Chen Chao, Huang Yaling, Zhang Le, Liu Songming, Qiu Si, Ge Yuping, Peng Wenting, Lin Xinxin, Zhang Xiuqing, Dong Xuan, Li Bo. A method of screening highly common neoantigens with immunogenicity in colorectal cancer based on public somatic mutation library[J]. Hereditas(Beijing), 2020, 42(6): 599-612.
表1
预测的结直肠癌候选抗原肽列表"
| 预测的新抗原表位 | 基因 | 突变位点 | 突变频率 | 新抗原突变位置 | 亲和力 (nmol/L) | EPIP分数 | 肿瘤中的 作用 |
|---|---|---|---|---|---|---|---|
| GLCE_V533I526-535 | GLCE | V533I | 6/321 | STIDESPIFK | 2.7 | 0.989077 | ? |
| C1orf170_S418G413-421 | C1orf170 | S418G | 5/321 | SVAGPGPNK | 21.7 | 0.974471 | ? |
| MUC3A_I29T28-36 | MUC3A | I29T | 6/321 | STSQVPFPR | 13.8 | 0.970609 | ? |
| CCRL2_F179Y174-183 | CCRL2 | F179Y | 5/321 | ATLPEYVVYK | 4.7 | 0.968889 | ?- |
| KIAA1683_M313T311-319 | KIAA1683 | M313T | 6/321 | STTTTTPPK | 7.9 | 0.964324 | ? |
| KLHL40_N345S341-349 | KLHL40 | N345S | 5/321 | ASLSSQVPK | 9.4 | 0.956861 | ? |
| MUC3A_S175P172-181 | MUC3A | S175P | 6/321 | STYPMTTTEK | 5.8 | 0.952998 | ? |
| RNF43_I47V46-54 | RNF43 | I47V | 7/321 | AVIRVIPLK | 7.8 | 0.949232 | TSG |
| SYNE2_A2395T2389-2398 | SYNE2 | A2395T | 5/321 | STQESATVEK | 28.9 | 0.946256 | ? |
| TLR10_I369L367-375 | TLR10 | I369L | 5/321 | RTLQLPHLK | 13.2 | 0.945037 | ? |
| ANKRD36C_N1571S1571-1579 | ANKRD36C | N1571S | 5/321 | STMEKCIEK | 6.6 | 0.94484 | ? |
| IYD_F231I229-237 | IYD | F231I | 6/321 | QVIGKIILK | 21.4 | 0.940062 | ? |
| SSX5_E19Q12-20 | SSX5 | E19Q | 5/321 | RVGSQIPQK | 35.7 | 0.936871 | ? |
| MUC3A_S326T319-327 | MUC3A | S326T | 7/321 | TTLPTTITR | 16.1 | 0.936033 | ? |
| ARHGEF11_H1427R1427-1435 | ARHGEF11 | H1427R | 5/321 | RTIEQLTLK | 10.8 | 0.933929 | ? |
| CTNNB1_T41A41-49 | CTNNB1 | T41A | 6/321 | ATAPSLSGK | 6.9 | 0.932574 | 癌基因 |
| LILRB5_L605F603-611 | LILRB5 | L605F | 5/321 | RSFPLTLPR | 6.9 | 0.931333 | ? |
| EIF2A_T92S86-95 | EIF2A | T92S | 5/321 | ATWQPYSTSK | 12.9 | 0.931289 | ? |
| TMPRSS15_P732S732-740 | TMPRSS15 | P732S | 5/321 | STDGGPFVK | 12 | 0.930946 | ? |
| MUC6_P2049L2044-2053 | MUC6 | P2049L | 9/321 | GTVPPLTTLK | 16.5 | 0.917963 | ? |
| TMEM185B_A42G42-51 | TMEM185B | A42G | 5/321 | GVFAPIWLWK | 5.7 | 0.904248 | ? |
| UNC93A_M403T402-410 | UNC93A | M403T | 6/321 | STFLCVHVK | 4.5 | 0.903415 | ? |
| MUC3A_Q31H28-36 | MUC3A | Q31H | 5/321 | SISHVPFPR | 14.1 | 0.901598 | ? |
| FSIP2_R1288Q1285-1293 | FSIP2 | R1288Q | 5/321 | SSLQSQLSK | 13.8 | 0.900572 | ? |
| FSIP2_T184NX | FSIP2 | T184NX | 2/321 | TTLPKFNKK | 10.2 | 0.961067 | ? |
表2
两个不同TCR库中丰度前两位的TCR α和β链配对信息"
| 抗原肽 | TCR克隆 | CDR3 序列 | TRV 基因 | J 基因 | 比例(%) |
|---|---|---|---|---|---|
| C1orf170_S418G413-421 | Clonotype1 | TRA: CAASGGAQKLVF | TRAV29DV5 | TRAJ54 | 53.2 |
| TRA: CAGLLYNSGNTPLVF | TRAV35 | TRAJ29 | |||
| TRB: CASSRDRGSNQPQHF | TRBV27 | TRBJ1-5 | |||
| Clonotype2 | TRA: CAASGGAQKLVF | TRAV29DV5 | TRAJ54 | 31.6 | |
| TRB: CASSRDRGSNQPQHF | TRBV27 | TRBJ1-5 | |||
| KRAS_G12V8-16 | Clonotype1 | TRA: CASNDYKLSF | TRAV8-3 | TRAJ20 | 80.5 |
| TRB: CASSLDGVSYEQYF | TRBV11-2 | TRBJ2-7 | |||
| Clonotype2 | TRA: ? | ? | ? | 14.3 | |
| TRB: CASSLDGVSYEQYF | TRBV11-2 | TRBJ2-7 |
| [1] |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A . Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018,68(6):394-424.
doi: 10.3322/caac.21492 pmid: 30207593 |
| [2] |
Magee MS, Kraft CL, Abraham TS, Baybutt TR, Marszalowicz GP, Li P, Waldman SA, Snook AE . GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. Oncoimmunology, 2016,5(10):e1227897.
doi: 10.1080/2162402X.2016.1227897 pmid: 27853651 |
| [3] |
Ciardiello D, Vitiello PP, Cardone C, Martini G, Troiani T, Martinelli E, Ciardiello F . Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat Rev, 2019,76:22-32.
doi: 10.1016/j.ctrv.2019.04.003 pmid: 31079031 |
| [4] |
Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA . T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther, 2011,19(3):620-626.
doi: 10.1038/mt.2010.272 |
| [5] |
Zhang CC, Wang Z, Yang Z, Wang ML, Li SQ, Li YY, Zhang R, Xiong ZX, Wei ZH, Shen JJ, Luo YL, Zhang QZ, Liu LM, Qin H, Liu W, Wu F, Chen W, Pan F, Zhang XQ, Bie P, Liang HJ, Pecher G, Qian C . Phase I escalating- dose trial of CAR-T therapy targeting CEA + metastatic colorectal cancers . Mol Ther, 2017,25(5):1248-1258.
doi: 10.1016/j.ymthe.2017.03.010 pmid: 28366766 |
| [6] |
Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA . Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther, 2010,18(4):843-851.
doi: 10.1038/mt.2010.24 pmid: 20179677 |
| [7] |
Zhou Z, Lyu XZ, Wu JC, Yang XY, Wu SS, Zhou J, Gu X, Su ZX, Chen SQ . TSNAD: an integrated software for cancer somatic mutation and tumour-specific neoantigen detection. R Soc Open Sci, 2017,4(4):170050.
doi: 10.1098/rsos.170050 pmid: 28484631 |
| [8] |
Nonomura C, Otsuka M, Kondou R, Iizuka A, Miyata H, Ashizawa T, Sakura N, Yoshikawa S, Kiyohara Y, Ohshima K, Urakami K, Nagashima T, Ohnami S, Kusuhara M, Mitsuya K, Hayashi N, Nakasu Y, Mochizuki T, Yamaguchi K, Akiyama Y . Identification of a neoantigen epitope in a melanoma patient with good response to anti- PD-1 antibody therapy. Immunol Lett, 2019,208:52-59.
doi: 10.1016/j.imlet.2019.02.004 pmid: 30880120 |
| [9] |
Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, Kriley IR, Rosenberg SA . T-Cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med, 2016,375(23):2255-2262.
doi: 10.1056/NEJMoa1609279 pmid: 27959684 |
| [10] |
Wirth TC, Kühnel F . Neoantigen targeting-dawn of a new era in cancer immunotherapy? Front Immunol, 2017,8:1848.
doi: 10.3389/fimmu.2017.01848 pmid: 29312332 |
| [11] |
Cafri G, Yossef R, Pasetto A, Deniger DC, Lu YC, Parkhurst M, Gartner JJ, Jia L, Ray S, Ngo LT, Jafferji M, Sachs A, Prickett T, Robbins PF, Rosenberg SA . Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nat Commun, 2019,10(1):449.
doi: 10.1038/s41467-019-08304-z pmid: 30683863 |
| [12] |
Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O . Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci, 2003,12(5):1007-1017.
doi: 10.1110/ps.0239403 pmid: 12717023 |
| [13] |
Nielsen M, Andreatta M . NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med, 2016,8(1):33.
doi: 10.1186/s13073-016-0288-x pmid: 27029192 |
| [14] |
Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M . NetMHCpan-4.0: improved Peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol, 2017,199(9):3360-3368.
doi: 10.4049/jimmunol.1700893 pmid: 28978689 |
| [15] |
Liu G, Li DL, Li Z, Qiu S, Li WH, Chao CC, Yang NB, Li HD, Cheng Z, Song X, Cheng L, Zhang XQ, Wang J, Yang HM, Ma K, Hou Y, Li B . PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity. Gigascience, 2017,6(5):1-11.
doi: 10.1093/gigascience/gix004 pmid: 28327916 |
| [16] |
Zhang H, Lund O, Nielsen M . The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics, 2009,25(10):1293-1299.
doi: 10.1093/bioinformatics/btp137 pmid: 19297351 |
| [17] |
Peters B, Sette A . Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics, 2005,6:132.
doi: 10.1186/1471-2105-6-132 pmid: 15927070 |
| [18] |
Creaney J, Ma S, Sneddon SA, Tourigny MR, Dick IM, Leon JS, Khong A, Fisher SA, Lake RA, Lesterhuis WJ, Nowak AK, Leary S, Watson MW, Robinson BW . Strong spontaneous tumor neoantigen responses induced by a natural human carcinogen. Oncoimmunology, 2015,4(7):e1011492.
doi: 10.1080/2162402X.2015.1011492 pmid: 26140232 |
| [19] | Hu WP, Li YP, Zhang XQ . MHC-I epitope presentation prediction based on transfer learning.Hereditas(Beijing), 41(11):1041-1049. |
| 胡伟澎, 李佑平, 张秀清 . 基于迁移学习的MHC-I型抗原表位呈递预测. 遗传, 41(11):1041-1049. | |
| [20] | Hu WP, Qiu S, Li YP, Lin XX, Zhang L, Xiang HT, Han X, Chen L, Li S, Li WH, Ren Z, Hou GX, Lin ZL, Lu JL, Liu G, Li B, Lee LJ . EPIP: MHC-I epitope prediction integrating mass spectrometry derived motifs and tissue- specific expression profile. bioRxiv, 2019,567081. |
| [21] |
Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, Baumgartner P, Stevenson BJ, Iseli C, Dangaj D, Czerniecki B, Semilietof A, Racle J, Michel A, Xenarios I, Chiang C, Monos DS, Torigian DA, Nisenbaum HL, Michielin O, June CH, Levine BL, Powell DJ Jr, Gfeller D, Mick R, Dafni U, Zoete V, Harari A, Coukos G, Kandalaft LE. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med, 2018, 10(436): eaao5931.
doi: 10.1126/scitranslmed.aao3003 pmid: 29643228 |
| [22] |
Yamamiya D, Mizukoshi E, Kaji K, Terashima T, Kitahara M, Yamashita T, Arai K, Fushimi K, Honda M, Kaneko S . Immune responses of human T lymphocytes to novel hepatitis B virus-derived peptides. PLoS One, 2018,13(6):e0198264.
doi: 10.1371/journal.pone.0198264 pmid: 29856876 |
| [23] |
Rodenko B, Toebes M, Hadrup SR, van Esch WJ, Molenaar AM, Schumacher TN, Ovaa H,. Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc, 2006,1(3):1120-1132.
doi: 10.1038/nprot.2006.121 pmid: 17406393 |
| [24] |
Kim MS, Ma JS, Yun HY, Cao Y, Kim JY, Chi V, Wang D, Woods A, Sherwood L, Caballero D, Gonzalez J, Schultz PG, Young TS, Kim CH . Redirection of genetically engineered CAR-T cells using bifunctional small molecules. J Am Chem Soc, 2015,137(8):2832-2835.
doi: 10.1021/jacs.5b00106 pmid: 25692571 |
| [25] |
Ali M, Foldvari Z, Giannakopoulou E, Böschen ML, Strønen E, Yang W, Toebes M, Schubert B, Kohlbacher O, Schumacher TN, Olweus J . Induction of neoantigen- reactive T cells from healthy donors. Nat Protoc, 2019,14(6):1926-1943.
doi: 10.1038/s41596-019-0170-6 pmid: 31101906 |
| [26] |
Lancaster EM, Jablons D, Kratz JR . Applications of next-generation sequencing in eoantigen prediction and cancer vaccine development. Genet Test Mol Biomarkers, 2019,24(2):59-66.
doi: 10.1089/gtmb.2018.0211 pmid: 30907630 |
| [27] |
The problem with neoantigen prediction. Nat Biotechnol, 2017,35(2):97.
doi: 10.1038/nbt.3800 pmid: 28178261 |
| [28] |
Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV, Parkhurst MR, Ankri C, Prickett TD, Crystal JS, Li YF, El-Gamil M, Rosenberg SA, Robbins PF, . Isolation of neoantigen- specific T cells from tumor and peripheral lymphocytes. J Clin Invest, 2015,125(10):3981-3991.
doi: 10.1172/JCI82416 pmid: 26389673 |
| [29] |
Lin QY, Liu Z, Luo MJ, Zheng H, Qiao S, Han CL, Deng DQ, Fan Z, Lu YF, Zhang ZH, Luo QM . Visualizing DC morphology and T cell motility to characterize DC-T cell encounters in mouse lymph nodes under mTOR inhibition. Sci China Life Sci, 2019,62(9):1168-1177.
doi: 10.1007/s11427-018-9470-9 pmid: 31016533 |
| [30] |
Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, Duan K, Ang N, Poidinger M, Lee YY, Larbi A, Khng AJ, Tan E, Fu C, Mathew R, Teo M, Lim WT, Toh CK, Ong BH, Koh T, Hillmer AM, Takano A, Lim TKH, Tan EH, Zhai W, Tan DSW, Tan IB, Newell EW . Bystander CD8 + T cells are abundant and phenotypically distinct in human tumour infiltrates . Nature, 2018,557(7706):575-579.
doi: 10.1038/s41586-018-0130-2 pmid: 29769722 |
| [31] |
Whiteside SK, Snook JP, Williams MA, Weis JJ . Bystander T Cells: a balancing act of friends and foes. Trends Immunol, 2018,39(12):1021-1035.
doi: 10.1016/j.it.2018.10.003 pmid: 30413351 |
| [32] |
Kim TS, Shin EC . The activation of bystander CD8 + T cells and their roles in viral infection . Exp Mol Med, 2019,51(12):1-9.
doi: 10.1038/s12276-019-0351-y pmid: 31811117 |
| [1] | 刘奇, 施鹏. 脊椎动物回声定位发声和听觉机制研究进展[J]. 遗传, 2025, 47(2): 237-257. |
| [2] | 万欣坤, 虞诗诚, 梅松青, 钟雯. 孟德尔随机化分析在结直肠癌血液标志物遗传背景研究中的应用[J]. 遗传, 2024, 46(10): 833-848. |
| [3] | 李以格, 张丹丹. 后GWAS时代结直肠癌致病SNP功能机制的研究进展[J]. 遗传, 2021, 43(3): 203-214. |
| [4] | 卢涣滋,王迪侃,王智. HPV阳性口咽癌患者预后与T细胞浸润和新抗原负荷相关性分析[J]. 遗传, 2019, 41(8): 725-735. |
| [5] | 胡伟澎, 李佑平, 张秀清. 基于迁移学习的MHC-I型抗原表位呈递预测[J]. 遗传, 2019, 41(11): 1041-1049. |
| [6] | 李会晨,冯会媛,张锡朋,刘蕊,马东旺,秦海,周毅,俞林. 天津地区人群hMLH1和hMSH2基因多态性与散发性结直肠癌易感性的关系[J]. 遗传, 2010, 32(12): 1241-1246. |
| [7] | 朱益民,林洁,陈俭,黄琼,邵丽娜,来茂德. Staufen基因在结直肠癌组织中的表达[J]. 遗传, 2005, 27(5): 705-709. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: