遗传 ›› 2024, Vol. 46 ›› Issue (4): 333-345.doi: 10.16288/j.yczz.24-030
曹振林(
), 李金红(
), 周铭辉, 张曼婷, 王宁, 陈一飞, 李嘉欣, 祝青松, 宫雯珺, 杨绪晨, 方小龙, 和家贤, 李美娜(
)
收稿日期:2024-01-24
修回日期:2024-03-07
出版日期:2024-04-20
发布日期:2024-03-29
通讯作者:
李美娜,博士,教授,研究方向:大豆杂种优势利用和生物钟与环境互作。E-mail: limeina@gzhu.edu.cn.作者简介:曹振林,硕士研究生,专业方向:材料与化工。E-mail: upgalaxy06@163.com;基金资助:
Zhenlin Cao(
), Jinhong Li(
), Minhui Zhou, Manting Zhang, Ning Wang, Yifei Chen, Jiaxin Li, Qingsong Zhu, Wenjun Gong, Xuchen Yang, Xiaolong Fang, Jiaxian He, Meina Li(
)
Received:2024-01-24
Revised:2024-03-07
Published:2024-04-20
Online:2024-03-29
Supported by:摘要:
我国大豆对外依赖度高,加速提高大豆产量是目前亟需解决的问题。利用杂种优势是大幅提高作物产量的有效途径之一,近年来基于隐性核不育基因开发的智能雄性不育系统,为快速利用大豆杂种优势提供了可能。但是,大豆雄性不育基因研究相对滞后。本研究基于课题组大豆花器官转录组数据,筛选到在大豆早期花药中优势表达基因GmFLA22a,编码含有FAS1结构域的成束状阿拉伯半乳糖蛋白,亚细胞定位表明其可能在内质网中发挥功能。利用基因编辑技术获得Gmfla22a突变体,突变体植株在营养生长阶段与对照组相比没有明显差异,但在生殖生长阶段表现为结实率显著降低。Gmfla22a突变体花粉活力和花粉萌发率均无明显异常,组织切片并染色观察发现,突变体植株花药室壁增厚,花粉粒释放延迟、不完全,这可能是导致Gmfla22a结实率降低的原因。综上,本研究初步揭示GmFLA22a可能参与调控大豆雄性育性,为深入揭示其分子功能提供重要遗传材料,同时为大豆杂种优势利用提供基因资源和理论依据。
曹振林, 李金红, 周铭辉, 张曼婷, 王宁, 陈一飞, 李嘉欣, 祝青松, 宫雯珺, 杨绪晨, 方小龙, 和家贤, 李美娜. 大豆花药优势表达基因GmFLA22a调控雄性育性的功能研究[J]. 遗传, 2024, 46(4): 333-345.
Zhenlin Cao, Jinhong Li, Minhui Zhou, Manting Zhang, Ning Wang, Yifei Chen, Jiaxin Li, Qingsong Zhu, Wenjun Gong, Xuchen Yang, Xiaolong Fang, Jiaxian He, Meina Li. Functional study of the soybean stamen-preferentially expressed gene GmFLA22a in regulating male fertility[J]. Hereditas(Beijing), 2024, 46(4): 333-345.
表1
本研究所用的引物信息"
| 引物名称 | 引物序列 | 用途 |
|---|---|---|
| 17G-qPCR-F | AGCATCTGCAAAAGCATCGC | qRT-PCR引物 |
| 17G-qPCR-R | CCAGCATTCGATCATTGGGC | qRT-PCR引物 |
| ACTIN2-F | ATGGTCGCCGTTTAGAACAC | 内参基因 |
| ACTIN2-R | GGGATAACCAGTGCAGAAGC | 内参基因 |
| 17G-pTF101-Mlu-F | CGACGCGTATGGCAAATAACATGGTTACGA | 构建亚细胞定位载体 |
| 17G-pTF101-Spe-R | GGACTAGTAAAGTATATCCCAGTCAGATAC | 构建亚细胞定位载体 |
| Cas9-17G-F | ATTGCTCCAACAGAAATTGATGCA | 扩增CRISPR/Cas9靶点 |
| Cas9-17G-R | AAACTGCATCAATTTCTGTTGGAG | 扩增CRISPR/Cas9靶点 |
| U-F | CTCCGTTTACCTGTGGAATCG | CRISPR/Cas9第一轮扩增引物 |
| gRNA-R | CGGAGGAAATTCCATCCAC | CRISPR/Cas9第一轮扩增引物 |
| Cas9-17G-2-F | TTCAGAGGTCTCTGACTACATGGAATCGGCAGCAAAGG | CRISPR/Cas9第二轮扩增引物 |
| Cas9-17G-2-F | AGCGTGGGTCTCGACCGACGCGTCCATCCACTCCAAGCTC | CRISPR/Cas9第二轮扩增引物 |
| Cas9-17G-TF | AGTAGGTGAAACAACATCTT | 靶点检测 |
| Cas9-17G-TR | HGCGTCGACAAAGTATATCCCAGTCAGATACAACAT | 靶点检测 |
| [1] |
Liu SL, Zhang M, Feng F, Tian ZX. Toward a “green revolution” for soybean. Mol Plant, 2020, 13(5): 688-697.
doi: 10.1016/j.molp.2020.03.002 |
| [2] | Kim YJ, Zhang DB. Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci, 2018, 23(1): 53-65. |
| [3] |
Fang XL, Sun YY, Li JH, Li MN, Zhang CB. Male sterility and hybrid breeding in soybean. Mol Breed, 2023, 43(6): 47.
doi: 10.1007/s11032-023-01390-4 |
| [4] | Wu B, Hu W, Xing YZ. The history and prospect of rice genetic breeding in China. Hereditas (Beijing), 2018, 40(10): 841-857. |
| 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望. 遗传, 2018, 40(10): 841-857. | |
| [5] |
Wu YZ, Fox TW, Trimnell MR, Wang LJ, Xu RJ, Cigan AM, Huffman GA, Garnaat CW, Hershey H, Albertsen MC. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J, 2016, 14(3): 1046-1054.
doi: 10.1111/pbi.12477 pmid: 26442654 |
| [6] | Deng XW, Wang HY, Tang XY, Zhou JL, Chen HD, He GM, Chen LB, Xu ZH. Hybrid rice breeding welcomes a new era of molecular crop design. Scientia Vitae, 2013, 43(10): 864-868. |
| [7] | Sun XY, Wang YF, Wang YH, Lin JY, Li JH, Qun YT, Fang XL, Kong FJ, Li MN. Progress on genic male sterility gene in soybean. Hereditas (Beijing), 2021, 43(1): 52-65. |
| 孙小媛, 王一帆, 王韫慧, 蔺佳雨, 李金红, 丘远涛, 方小龙, 孔凡江, 李美娜. 大豆细胞核雄性不育基因研究进展. 遗传, 2021, 43(1): 52-65. | |
| [8] |
Fang XL, Sun XY, Yang XD, Li Q, Lin CJ, Xu J, Gong WJ, Wang YF, Liu L, Zhao LM, Liu BH, Qin J, Zhang CB, Kong FJ, Li MN. MS1 is essential for male fertility by regulating the microsporocyte cell plate expansion in soybean. Sci China Life Sci, 2021, 64(9): 1533-1545.
doi: 10.1007/s11427-021-1973-0 |
| [9] |
Jiang BJ, Chen L, Yang CY, Wu TT, Yuan S, Wu CX, Zhang MC, Gai JY, Han TF, Hou WS, Sun S. The cloning and CRISPR/Cas9-mediated mutagenesis of a male sterility gene MS1 of soybean. Plant Biotechnol J, 2021, 19(6): 1098-1100.
doi: 10.1111/pbi.v19.6 |
| [10] |
Nadeem M, Chen AD, Hong HL, Li DD, Li JJ, Zhao D, Wang W, Wang XB, Qiu LJ. GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.). J Integr Plant Biol, 2021, 63(6): 1054-1064.
doi: 10.1111/jipb.v63.6 |
| [11] |
Fang XL, Feng XC, Sun XY, Yang XD, Li Q, Yang XL, Xu J, Zhou MH, Lin CJ, Sui Y, Zhao LM, Liu BH, Kong FJ, Zhang CB, Li MN. Natural variation of MS2 confers male fertility and drives hybrid breeding in soybean. Plant Biotechnol J, 2023, 21(11): 2322-2332.
doi: 10.1111/pbi.v21.11 |
| [12] |
Hou JJ, Fan WW, Ma RR, Li B, Yuan ZH, Huang WX, Wu YY, Hu Q, Lin CJ, Zhao XQ, Peng B, Zhao LM, Zhang CB, Sun LJ. MALE STERILITY 3 encodes a plant homeodomain-finger protein for male fertility in soybean. J Integr Plant Biol, 2022, 64(5): 1076-1086.
doi: 10.1111/jipb.v64.5 |
| [13] |
Thu SW, Rai KM, Sandhu D, Rajangam A, Balasubramanian VK, Palmer RG, Mendu V. Mutation in a PHD-finger protein MS4 causes male sterility in soybean. BMC Plant Biol, 2019, 19(1): 1-12.
doi: 10.1186/s12870-018-1600-2 |
| [14] | Zhang WN, Yang J, Yang XL, Gao MM, Lin CJ, Liu P, Li ZG, Yang XD, Zhang CB. Functional identification of a nuclear male sterility gene MS6 and creation of new sterile germplasms in soybean. J Plant Genet Res, 2023, 24(3): 801-807. |
|
张万年, 杨静, 杨绪磊, 高萌萌, 林春晶, 刘鹏, 李志刚, 杨向东, 张春宝. 大豆细胞核雄性不育基因MS6的功能验证及不育新种质创制. 植物遗传资源学报, 2023, 24(3): 801-807.
doi: 10.13430/j.cnki.jpgr.20221030001 |
|
| [15] |
Yu JP, Zhao GL, Li W, Zhang Y, Wang P, Fu AG, Zhao LM, Zhang CB, Xu M. A single nucleotide polymorphism in an R2R3 MYB transcription factor gene triggers the male sterility in soybean ms6 (Ames1). Theor Appl Genet, 2021, 134(11): 3661-3674.
doi: 10.1007/s00122-021-03920-0 |
| [16] |
Ma YX, Johnson K. Arabinogalactan proteins- multifunctional glycoproteins of the plant cell wall. Cell Surf, 2023, 9: 100102.
doi: 10.1016/j.tcsw.2023.100102 |
| [17] |
Seifert GJ. Fascinating fasciclins: a surprisingly widespread family of proteins that mediate interactions between the cell exterior and the cell surface. Int J Mol Sci, 2018, 19(6): 1628.
doi: 10.3390/ijms19061628 |
| [18] |
Li J, Yu M, Geng LL, Zhao J. The fasciclin‐like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. Plant J, 2010, 64(3): 482-497.
doi: 10.1111/tpj.2010.64.issue-3 |
| [19] |
Miao YJ, Cao JS, Huang L, Yu YJ, Lin S.FLA14 is required for pollen development and preventing premature pollen germination under high humidity in Arabidopsis. BMC Plant Biol, 2021, 21(1): 254.
doi: 10.1186/s12870-021-03038-x |
| [20] |
Deng Y, Wan YC, Liu WC, Zhang LS, Zhou K, Feng P, He GH, Wang N. OsFLA1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice. Theor Appl Genet, 2022, 135(4): 1247-1262.
doi: 10.1007/s00122-021-04028-1 |
| [21] |
Huang HT, Miao YJ, Zhang YT, Huang L, Cao JS, Lin S. Comprehensive analysis of arabinogalactan protein- encoding genes reveals the involvement of three BrFLA genes in pollen germination in Brassica rapa. Int J Mol Sci, 2021, 22(23): 13142.
doi: 10.3390/ijms222313142 |
| [22] |
Zhang M, Wei HL, Liu J, Bian YJ, Ma Q, Mao GZ, Wang HT, Wu AM, Zhang JJ, Chen PY, Ma L, Fu XK, Yu SX. Non-functional GoFLA19s are responsible for the male sterility caused by hybrid breakdown in cotton (Gossypium spp.). Plant J, 2021, 107(4): 1198-1212.
doi: 10.1111/tpj.v107.4 |
| [23] | Chen K, Dou H, Ouyang YD. Paraffin embedding rice tissues and sectioning. Bio-101, 2018, e1010140. |
| 程珂, 都浩, 欧阳亦聃. 水稻组织石蜡切片. Bio-101, 2018, e1010140. | |
| [24] |
Chen LY, Nan HY, Kong LP, Yue L, Yang H, Zhao QS, Fang C, Li HY, Cheng Q, Lu SJ, Kong FJ, Liu BH, Dong LD. Soybean AP1 homologs control flowering time and plant height. J Integr Plant Biol, 2020, 62(12): 1868-1879.
doi: 10.1111/jipb.v62.12 |
| [25] |
Ma XL, Zhang QY, Zhu QL, Liu W, Chen Y, Qiu R, Wang B, Yang ZF, Li HY, Lin YR, Xie YY, Shen RX, Chen SF, Wang Z, Chen YL, Guo JX, Chen LT, Zhao XC, Dong ZC, Liu YG. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172 |
| [26] | Yang J, Xing GJ, Du X, Sui L, Guo DQ, Niu L, Yang XD. Effects of different soybean genotypes on the transformation efficiency of soybean and analysis of the T-DNA insertions in the soybean genome. Soybean Sci, 2016, 35(4): 562-567. |
| 杨静, 邢国杰, 杜茜, 隋丽, 郭东全, 牛陆, 杨向东. 不同大豆基因型对大豆遗传转化效率的影响及外源T-DNA插入分析. 大豆科学, 2016, 35(4): 562-567. | |
| [27] | Yao SE, Wang YF, Wang N, Zhou MH, Chen YF, Zhang MT, Li JX, Gong WJ, Fang XL, Li MN. The soybean stamen-preferentially expressed gene GmARFA1a regulates seed setting rate by controlling pollen germination. J Plant Genet Res, 2024, 1: 1-16. |
| 姚士恩, 王一帆, 王宁, 周铭辉, 陈一飞, 张曼婷, 李嘉欣, 宫雯珺, 方小龙, 李美娜. 大豆雄蕊优势表达基因GmARFA1a通过调控花粉萌发影响结实率. 植物遗传资源学报, 2024, 1: 1-16. | |
| [28] |
Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res, 2021, 49(D1): D458-D460.
doi: 10.1093/nar/gkaa937 pmid: 33104802 |
| [29] |
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG.Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21): 2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036 |
| [30] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
| [31] |
He JD, Zhao H, Cheng ZL, Ke YW, Liu JX, Ma HL. Evolution analysis of the fasciclin-like arabinogalactan proteins in plants shows variable fasciclin-AGP domain constitutions. Int J Mol Sci, 2019, 20(8): 1945.
doi: 10.3390/ijms20081945 |
| [32] |
Johnson KL, Jones BJ, Bacic A, Schultz CJ. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol, 2003, 133(4): 1911-1925.
doi: 10.1104/pp.103.031237 pmid: 14645732 |
| [33] | Lin JY, Li JH, Feng XC, Zhou MH, Wang N, Chen YF, Li MN. Effects of AtFLA22 gene on fertility in Arabidopsis thaliana. Heilongjiang Agric Scis, 2023, (8): 1-7. |
| 蔺佳雨, 李金红, 冯湘池, 周铭辉, 王宁, 陈一飞, 李美娜. AtFLA22基因对拟南芥育性的影响. 黑龙江农业科学, 2023, (8): 1-7. | |
| [34] | Zang LN, Zheng TC, Su XH. Advances in research of fasciclin-like arabinogalactan proteins (FLAs) in plants. Plant Omics, 2015, 8(2): 190-194. |
| [35] |
Hromadová D, Soukup A, Tylová E. Arabinogalactan proteins in plant roots--an update on possible functions. Front Plant Sci, 2021, 12: 674010.
doi: 10.3389/fpls.2021.674010 |
| [36] | Tan HX, Liang WQ, Hu JP, Zhang DB. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Dev Cell, 2012, 22(6): 1127-1137. |
| [37] |
Huber O, Sumper M. Alga-CAMs: isoforms of a cell adhesion molecule in embryos of the alga Volvox with homology to Drosophila fasciclin I. EMBO J, 1994, 13(18): 4212-4222.
doi: 10.1002/j.1460-2075.1994.tb06741.x pmid: 7925267 |
| [1] | 周迅, 周世杰, 刘捷, 王宇祥. 靶向RNA的CRISPR/Cas系统及衍生技术[J]. 遗传, 2025, 47(8): 842-860. |
| [2] | 姬亚捷, 熊杰, 邱先进, 王克剑. 植物孤雌生殖研究进展:助力无融合生殖走向应用[J]. 遗传, 2025, 47(4): 448-455. |
| [3] | 倪嘉欣, 张蔚. 蝶翅花纹的演化发育生物学研究进展[J]. 遗传, 2025, 47(2): 258-270. |
| [4] | 潘东霞, 王辉, 熊本海, 唐湘方. CRISPR-Cas基因编辑技术在羊生产应用中研究进展[J]. 遗传, 2024, 46(9): 690-700. |
| [5] | 杨森, 马宝霞, 钱泓润, 崔婕妤, 张潇筠, 李利达, 魏泽辉, 张智英, 王建刚, 徐坤. 基于小型化Cas蛋白的CRISPR/Gal4BD-Cas供体适配基因编辑系统研究[J]. 遗传, 2024, 46(9): 716-726. |
| [6] | 朱家华, 沈俊男, 伊旭东, 李睿, 喻赫, 丁荣荣, 庞卫军. 杂种优势形成机制和预测方法及其在猪生产中的应用与展望[J]. 遗传, 2024, 46(8): 627-639. |
| [7] | 马宝霞, 杨森, 吕明, 王昱人, 常立业, 韩艺帆, 王建刚, 郭杨, 徐坤. 不同CRISPR/Cas9供体适配基因编辑系统的比较及优化研究[J]. 遗传, 2024, 46(6): 466-477. |
| [8] | 刘羽诚, 申妍婷, 田志喜. 大豆泛基因组研究进展[J]. 遗传, 2024, 46(3): 183-198. |
| [9] | 鲍艳春, 戴伶俐, 刘在霞, 马凤英, 王宇, 刘永斌, 谷明娟, 娜日苏, 张文广. CRISPR/Cas9系统在畜禽遗传改良中研究进展[J]. 遗传, 2024, 46(3): 219-231. |
| [10] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
| [11] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
| [12] | 赖笔威, 陈磊, 芦思佳. 大豆光周期适应性研究进展[J]. 遗传, 2023, 45(9): 793-800. |
| [13] | 王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
| [14] | 吴仲胜, 高誉, 杜勇涛, 党颂, 何康敏. CRISPR-Cas9基因编辑技术对细胞内源蛋白进行荧光标记的实验操作[J]. 遗传, 2023, 45(2): 165-175. |
| [15] | 刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: