遗传 ›› 2015, Vol. 37 ›› Issue (12): 1185-1193.doi: 10.16288/j.yczz.15-192
李贵林, 牛丽莉, 刘海峰, 郭家中
收稿日期:
2015-05-04
出版日期:
2015-12-20
发布日期:
2015-09-23
通讯作者:
郭家中,博士,讲师,研究方向:动物遗传育种。E-mail: jiazhong.guo@sicau.edu.cn
E-mail:lgl403441236@foxmail.com
作者简介:
李贵林,硕士研究生,专业方向:动物遗传育种。E-mail: lgl403441236@foxmail.com
基金资助:
Guilin Li, Lili Niu, Haifeng Liu, Jiazhong Guo
Received:
2015-05-04
Online:
2015-12-20
Published:
2015-09-23
摘要: 胰岛素样生长因子(Insulin-like growth factors, IGFs)信号系统是动物体内一条重要的信号通路,广泛作用于机体的生长、发育以及疾病的发生和发展等各种生命活动过程。尽管IGFs系统的各种配体、受体和结合蛋白分子的基因结构、功能及作用机制已被深入地研究,但是有关胰岛素样生长因子酸不稳定亚基(Insulin-like growth factor acid-labile subunit, IGFALS)的功能研究却一直局限于其延长IGFs半衰期方面。近年来,越来越多的研究表明IGFALS基因的突变和蛋白表达量的偏低均可能导致动物体生长发育的延迟甚至缺陷。本文综述了IGFALS基因序列特征、IGFALS蛋白的结构特点及其生物学功能以及表达调控的研究进展,旨在为IGFALS的功能及其作用机制的深入研究提供参考。
李贵林, 牛丽莉, 刘海峰, 郭家中. 哺乳动物胰岛素样生长因子酸不稳定亚基的结构与功能[J]. 遗传, 2015, 37(12): 1185-1193.
Guilin Li, Lili Niu, Haifeng Liu, Jiazhong Guo. Structure and function of insulin-like growth factor acid-labile subunits in mammalian homologues[J]. HEREDITAS(Beijing), 2015, 37(12): 1185-1193.
[1] Schlupf J, Steinbeisser H. IGF antagonizes the Wnt/β-Catenin pathway and promotes differentiation of extra-embryonic endoderm. Differentiation , 2014, 87(5): 209-219. [2] Constância M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, Reik W. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature , 2002, 417(6892): 945-948. [3] Wang YM, Nishida S, Sakata T, Elalieh HZ, Chang WH, Halloran BP, Doty SB, Bikle DD. Insulin-like growth factor-I is essential for embryonic bone development. Endocrinology , 2006, 147(10): 4753-4761. [4] Chen L, Jiang W, Huang JY, He BC, Zuo GW, Zhang WL, Luo Q, Shi Q, Zhang BQ, Wagner ER, Luo JY, Tang M, Wietholt C, Luo XJ, Bi Y, Su YX, Liu B, Kim SH, He CJ, Hu YW, Shen JK, Rastegar F, Huang EY, Gao YH, Gao JL, Zhou JZ, Reid RR, Luu HH, Haydon RC, He TC, Deng ZL. Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J Bone Miner Res , 2010, 25(11): 2447-2459. [5] Ibrahim YH, Yee D. Insulin-like growth factor-I and cancer risk. Growth Horm IGF Res , 2004, 14(4): 261-269. [6] Ren J, Anversa P. The insulin-like growth factor I system: physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome. Biochem Pharmacol , 2015, 93(4): 409-417. [7] Guler HP, Zapf J, Schmid C, Froesch ER. Insulin-like growth factors I and II in healthy man. Estimations of half-lives and production rates. Acta Endocrinol (Copenh) , 1989, 121(6): 753-758. [8] Zapf J. Insulinlike growth factor binding proteins and tumor hypoglycemia. Trends Endocrinol Met , 1995, 6(2): 37-42. [9] Leong SR, Baxter RC, Camerato T, Dai J, Wood WI. Structure and functional expression of the acid-labile subunit of the insulin-like growth factor-binding protein complex. Mol Endocrinol , 1992, 6(6): 870-876. [10] Boisclair YR, Rhoads RP, Ueki I, Wang J, Ooi GT. The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system. J Endocrinol , 2001, 170(1): 63-70. [11] Dai J, Baxter RC. Molecular cloning of the acid-labile subunit of the rat insulin-like growth factor binding protein complex. Biochem Biophys Res Commun , 1992, 188(1): 304-309. [12] Boisclair YR, Seto D, Hsieh S, Hurst KR, Ooi GT. Organization and chromosomal localization of the gene encoding the mouse acid labile subunit of the insulin-like growth factor binding complex. Proc Natl Acad Sci USA , 1996, 93(19): 10028-10033. [13] Rhoads RP, Greenwood PL, Bell AW, Boisclair YR. Organization and regulation of the gene encoding the sheep acid-labile subunit of the 150-kilodalton insulin-like growth factor-binding protein complex. Endocrinology , 2000, 141(4): 1425-1433. [14] Li S, Ren JF, Huang L. Characterization of the porcine insulin- like growth factor-binding protein , acid-labile subunit gene: full-length cDNA and DNA sequence, polymorphisms and expression profile. J Anim Breed Genet , 2007, 124(3): 133-138. [15] Kim JW, Rhoads RP, Segoale N, Kristensen NB, Bauman DE, Boiselair YR. Isolation of the cDNA encoding the acid labile subunit (ALS) of the 150 kDa IGF-binding protein complex in cattle and ALS regulation during the transition from pregnancy to lactation. J Endocrinol , 2006, 189(3): 583-593. [16] Lee DH, Chun C, Kim SH, Lee CY. Expression of porcine acid-labile subunit (pALS) of the 150-kilodalton ternary insulin-like growth factor complex and initial characterization of recombinant pALS protein. J Biochem Mol Biol , 2005, 38(2): 225-231. [17] Janosi JB, Firth SM, Bond JJ, Baxter RC, Delhanty PJ. N-Linked glycosylation and sialylation of the acid-labile subunit. Role in complex formation with insulin-like growth factor (IGF)-binding protein-3 and the IGFs. J Biol Chem , 1999, 274(9): 5292-5298. [18] Baxter RC, Martin JL, Beniac VA. High molecular weight insulin-like growth factor binding protein complex. Purification and properties of the acid-labile subunit from human serum. J Biol Chem , 1989, 264(20): 11843-11848. [19] Holman SR, Baxter RC. Insulin-like growth factor binding protein-3: factors affecting binary and ternary complex formation. Growth Regul , 1996, 6(1): 42-47. [20] Twigg SM, Baxter RC. Insulin-like growth factor (IGF)-binding protein 5 forms an alternative ternary complex with IGFs and the acid-labile subunit. J Biol Chem , 1998, 273(11): 6074-6079. [21] Hashimoto R, Ono M, Fujiwara H, Higashihashi N, Yoshida M, Enjoh-Kimura T, Sakano KI. Binding sites and binding properties of binary and ternary complexes of insulin-like growth factor-II (IGF-II), IGF-binding protein-3, and acid-labile subunit. J Biol Chem , 1997, 272(44): 27936-27942. [22] Twigg SM, Hardman KV, Baxter RC. A purified bovine serum albumin preparation contains an insulin-like growth factor (IGF) binding protein-3 fragment that forms ternary complexes selectively with IGF-II and the acid-labile subunit. Growth Horm IGF Res , 2000, 10(4): 215-223. [23] Janosi JBM, Ramsland PA, Mott MR, Firth SM, Baxter RC, Delhanty PJD. The acid-labile subunit of the serum insulin-like growth factor-binding protein complexes. Structural determination by molecular modeling and electron microscopy. J Biol Chem , 1999, 274(33): 23328-23332. [24] Xu S, Cwyfan-Hughes SC, van der Stappen JW, Sansom J, Burton JL, Donnelly M, Holly JM. Insulin-like growth factors (IGFs) and IGF-binding proteins in human skin interstitial fluid. J Clin Endocrinol Metab , 1995, 80(10): 2940-2945. [25] Hughes SCC, Mason HD, Franks S, Holly JM. The insulin-like growth factors (IGFs) in follicular fluid are predominantly bound in the ternary complex. J Endocrinol , 1997, 155(3): R1-R4. [26] Khosravi MJ, Diamandi A, Mistry J, Krishna RG, Khare A. Acid-labile subunit of human insulin-like growth factor-binding protein complex: measurement, molecular, and clinical evaluation. J Clin Endocrinol Metab , 1997, 82(12): 3944-3951. [27] Janosi JB, Twigg SM, Firth SM, Baxter RC, Delhanty PJD. Histochemical examination of the acid-labile subunit protein in human tissue. In: Proceedings of the 5th International Symposium on Insulin-like Growth Factors. 1999: 373. [28] Wandji SA, Gadsby JE, Simmen FA, Barber JA, Hammond JM. Porcine ovarian cells express messenger ribonucleic acids for the acid-labile subunit and insulin-like growth factor binding protein-3 during follicular and luteal phases of the estrous cycle. Endocrinology , 2000, 141(7): 2638-2647. [29] Baxter RC. Circulating levels and molecular distribution of the acid-labile ( α ) subunit of the high molecular weight insulin-like growth factor-binding protein complex. J Clin Endocrinol Metab , 1990, 70(5): 1347-1353. [30] Ueki I, Ooi GT, Tremblay ML, Hurst KR, Bach LA, Boisclair YR. Inactivation of the acid labile subunit gene in mice results in mild retardation of postnatal growth despite profound disruptions in the circulating insulin-like growth factor system. Proc Natl Acad Sci USA , 2000, 97(12): 6868-6873. [31] Domené HM, Bengolea SV, Martínez AS, Ropelato MG, Pennisi P, Scaglia P, Heinrich JJ, Jasper HG. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N Engl J Med , 2004, 350(6): 570-577. [32] David A, Rose SJ, Miraki-Moud F, Metherell LA, Savage MO, Clark AJL, Camacho-Hübner C. Acid-labile subunit deficiency and growth failure: description of two novel cases. Horm Res Paediatr , 2010, 73(5): 328-334. [33] Fofanova-Gambetti OV, Hwa V, Wit JM, Domene HM, Argente J, Bang P, Högler W, Kirsch S, Pihoker C, Chiu HK, Cohen L, Jacobsen C, Jasper HG, Haeusler G, Campos-Barros A, Gallego-Gómez E, Gracia-Bouthelier R, van Duyvenvoorde HA, Pozo J, Rosenfeld RG. Impact of heterozygosity for acid-labile subunit ( IGFALS ) gene mutations on stature: results from the international acid-labile subunit consortium. J Clin Endocrinol Metab , 2010, 95(9): 4184-4191. [34] Domené HM, Bengolea SV, Jasper HG, Boisclair YR. Acid-labile subunit deficiency: phenotypic similarities and differences between human and mouse. J Endocrinol Invest , 2005, 28(5 Suppl.): 43-46. [35] Courtland HW, DeMambro V, Maynard J, Sun H, Elis S, Rosen C, Yakar S. Sex-specific regulation of body size and bone slenderness by the acid labile subunit. J Bone Miner Res , 2010, 25(9): 2059-2068. [36] Fritton JC, Kawashima Y, Mejia W, Courtland HW, Elis S, Sun H, Wu Y, Rosen CJ, Clemmons D, Yakar S. The insulin-like growth factor-1 binding protein acid-labile subunit alters mesenchymal stromal cell fate. J Biol Chem , 2010, 285(7): 4709-4714. [37] Yakar S, Bouxsein ML, Canalis E, Sun H, Glatt V, Gundberg C, Cohen P, Hwang D, Boisclair Y, Leroith D, Rosen CJ. The ternary IGF complex influences postnatal bone acquisition and the skeletal response to intermittent parathyroid hormone. J Endocrinol , 2006, 189(2): 289-299. [38] Flannery BM, Amuzie CJ, Pestka JJ. Evaluation of insulin-like growth factor acid-labile subunit as a potential biomarker of effect for deoxynivalenol-induced proinflammatory cytokine expression. Toxicology , 2013, 304: 192-198. [39] Guo JZ, Jorjani H, Carlborg Ö. A genome-wide association study using international breeding-evaluation data identifies major loci affecting production traits and stature in the Brown Swiss cattle breed. BMC Genet , 2012, 13: 82. [40] Liu Y, Duan XY, Liu XL, Guo JZ, Wang HL, Li ZX, Yang J. Genetic variations in insulin-like growth factor binding protein acid labile subunit gene associated with growth traits in beef cattle ( Bos taurus ) in China. Gene , 2014, 540(2): 246-250. [41] 郑凯迪. 斑马鱼Igfals的表达、转录调控及功能研究[学位论文]. 重庆: 西南大学, 2010. [42] Ueki I, Giesy SL, Harvatine KJ, Kim JW, Boisclair YR. The acid-labile subunit is required for full effects of exogenous growth hormone on growth and carbohydrate metabolism. Endocrinology , 2009, 150(7): 3145-3152. [43] Aguiar-Oliveira MH, Gill MS, de A Barretto ES, Alcântara MR, Miraki-Moud F, Menezes CA, Souza AH, Martinelli CE, Pereira FA, Salvatori R, Levine MA, Shalet SM, Camacho-Hubner C, Clayton PE. Effect of severe growth hormone (GH) deficiency due to a mutation in the GH-releasing hormone receptor on insulin-like growth factors (IGFs), IGF-binding proteins, and ternary complex formation throughout life. J Clin Endocrinol Metab , 1999, 84(11): 4118-4126. [44] Ooi GT, Hurst KR, Poy MN, Rechler MM, Boisclair YR. Binding of STAT5a and STAT5b to a single element resembling a γ-interferon-activated sequence mediates the growth hormone induction of the mouse acid-labile subunit promoter in liver cells. Mol Endocrinol , 1998, 12(5): 675-687. [45] Chia DJ, Rotwein P. Defining the epigenetic actions of growth hormone: acute chromatin changes accompany GH-activated gene transcription. Mol Endocrinol , 2010, 24(10): 2038-2049. [46] Delhanty PJD. Interleukin-1β suppresses growth hormone-induced acid-labile subunit mRNA levels and secretion in primary Hepatoeytes. Biochem Biophys Res Commun , 1998, 243(1): 269-272. [47] Barreca A, Ketelslegers JM, Arvigo M, Minuto F, Thissen JP. Decreased acid-labile subunit (ALS) levels by endotoxin in vivo and by interleukin-1β in vitro . Growth Horm IGF Res , 1998, 8(3): 217-223. [48] Boisclair YR, Wang JR, Shi JR, Hurst KR, Ooi GT. Role of the suppressor of cytokine signaling-3 in mediating the inhibitory effects of interleukin-1β on the growth hormone-dependent transcription of the acid-labile subunit gene in liver cells. J Biol Chem , 2000, 275(6): 3841-3847. [49] Lang CH, Liu XL, Nystrom GJ, Frost RA. Acute response of IGF-I and IGF binding proteins induced by thermal injury. Am J Physiol Endocrinol Metab , 2000, 278(6): E1087-E1096. [50] Dai J, Scott CD, Baxter RC. Regulation of the acid-labile subunit of the insulin-like growth factor complex in cultured rat hepatocytes. Endocrinology , 1994, 135(3): 1066-1072. [51] Delhanty PJ, Baxter RC. The regulation of acid-labile subunit gene expression and secretion by cyclic adenosine 3’, 5’-monophosphate. Endocrinology , 1998, 139(1): 260-265. [52] Heath KE, Argente J, Barrios V, Pozo J, Díaz-González F, Martos-Moreno GA, Caimari M, Gracia R, Campos-Barros A. Primary acid-labile subunit deficiency due to recessive IGFALS mutations results in postnatal growth deficit associated with low circulating insulin growth factor (IGF)-I, IGF binding protein-3 levels, and hyperinsulinemia. J Clin Endocrinol Metab , 2008, 93(5): 1616-1624. [53] Domené HM, Hwa V, Argente J, Wit JM, Camacho-Hübner C, Jasper HG, Pozo J, van Duyvenvoorde HA, Yakar S, Fofanova-Gambetti OV, Rosenfeld RG, Hermus ARMM, Twickler TB, Kempers MJE. Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences. Horm Res , 2009, 72(3): 129-141. [54] Domené HM, Hwa V, Jasper HG, Rosenfeld RG. Acid-labile subunit (ALS) deficiency. Best Pract Res Clin Endocrinol Metab , 2011, 25(1): 101-113. [55] Kennedy OD, Sun H, Wu YJ, Courtland HW, Williams GA, Cardoso L, Basta-Pljakic J, Schaffler MB, Yakar S. Skeletal response of male mice to anabolic hormone therapy in the absence of the Igfals gene. Endocrinology , 2014, 155(3): 987-999 |
[1] | 孙兆庆, 闫波. 转录因子GATA6在心血管疾病中的作用及其调控机制[J]. 遗传, 2019, 41(5): 375-383. |
[2] | 刘刚,孙飞舟,朱芳贤,冯海永,韩旭. 连续性纯合片段在畜禽基因组研究中的应用[J]. 遗传, 2019, 41(4): 304-317. |
[3] | 徐福如, 蒋文君, 张涛, 姜倩, 张瑞雪, 毕宏生. FBN2基因突变与遗传性结缔组织病的发生[J]. 遗传, 2019, 41(10): 919-927. |
[4] | 王玉杰, 周小坤, 徐丹. 常染色体隐性遗传小头畸形相关蛋白研究进展[J]. 遗传, 2019, 41(10): 905-918. |
[5] | 张楷, 刘蔚, 刘小凤, 陈瑶生, 刘小红, 何祖勇. 利用CRISPR/Cas9系统构建人HPRT1基因定点突变细胞株[J]. 遗传, 2019, 41(10): 939-949. |
[6] | 严婷婷, 张蕾, 李余动, 梁新乐. 基于微信的“微生物遗传育种实验”混合式教学模式探究[J]. 遗传, 2018, 40(7): 601-606. |
[7] | 骆甲,王型力,孙志超,吴迪,张玮,王正加. 植物环状RNA研究进展[J]. 遗传, 2018, 40(6): 467-477. |
[8] | 丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[9] | 梁卉, 陈国杰, 于燕, 熊礼宽. 低温变性下复合PCR技术及其应用[J]. 遗传, 2018, 40(3): 227-236. |
[10] | 史悦,许争争,鲁欢,慈维敏. 肿瘤突变特征与病理分型的关联研究[J]. 遗传, 2018, 40(11): 1033-1038. |
[11] | 陈一欧, 宝颖, 马华峥, 伊宗裔, 周卓, 魏文胜. 基因编辑技术及其在中国的研究发展[J]. 遗传, 2018, 40(10): 900-915. |
[12] | 程霄,杨琼,谭镇东,谭娅,蒲红州,赵雪,张顺华,朱砺. 增强子RNA研究现状[J]. 遗传, 2017, 39(9): 784-797. |
[13] | 韩晓斌, 徐冉, 段朋根, 于海跃, 罗越华, 李云海. 水稻斑点叶突变体spl101和spl102的筛选及候选基因鉴定[J]. 遗传, 2017, 39(4): 346-353. |
[14] | 刘玉庆, 朱雄, 李姝锦, 杨业明, 杨牧, 赵培泉, 朱献军. 家族性渗出性玻璃体视网膜病变患者LRP5基因突变研究[J]. 遗传, 2017, 39(3): 241-249. |
[15] | 叶宇华,张倩倩,钟建美,黎倚红,张立,喻秋霞,徐湘民. 人类珠蛋白相关基因上游开放阅读框的变异分析[J]. 遗传, 2017, 39(3): 232-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: