遗传 ›› 2024, Vol. 46 ›› Issue (3): 209-218.doi: 10.16288/j.yczz.23-248
收稿日期:2023-11-10
修回日期:2023-12-28
出版日期:2024-03-20
发布日期:2024-01-19
通讯作者:
岑山,博士,研究员,研究方向:病毒学。E-mail: shancen@hotmail.com;作者简介:张傲,硕士研究生,专业方向:LINE-1与肿瘤维持机制的研究。E-mail: za1632649341@163.com
基金资助:
Ao Zhang(
), Shan Cen(
), Xiaoyu Li(
)
Received:2023-11-10
Revised:2023-12-28
Published:2024-03-20
Online:2024-01-19
Supported by:摘要:
长散布元件-1 (long interspersed elements-1,LINE-1)是现今在人类基因组中唯一具有自主转座能力的转座子,其转座会引起细胞基因组结构和功能的改变,是导致多种严重疾病的重要因素。在转座过程中,LINE-1 mRNA是转座中间体的核心,宿主细胞对其进行相关修饰直接影响转座。N6-腺苷甲基化修饰(m6A)是真核细胞RNA上最丰富且动态可逆的表观遗传修饰。目前发现m6A修饰也存在于LINE-1 mRNA上,参与LINE-1整个生命周期的调控,影响其转座和基因组中LINE-1相邻基因的表达,进而影响基因组稳定性、细胞自我更新与分化潜能,在人类发育和疾病中具有重要作用。本文介绍了LINE-1 m6A修饰的位置、功能以及相关机制,并总结了LINE-1的m6A修饰对其转座调控的研究进展,以期为相关疾病发生发展的机制研究和治疗提供新的思路。
张傲, 岑山, 李晓宇. N6-腺苷甲基化修饰及其对LINE-1的调控机制[J]. 遗传, 2024, 46(3): 209-218.
Ao Zhang, Shan Cen, Xiaoyu Li. N6-adenosine methylation and the regulatory mechanism on LINE-1[J]. Hereditas(Beijing), 2024, 46(3): 209-218.
图2
m6A修饰对LINE-1的影响 A:LINE-1的结构。LINE-1由开放阅读框ORF0、ORF1、ORF2和非编码区5′ UTR、3′ UTR构成,5′ UTR 有两个启动子,是双向的:正义启动子活性可转录 ORF1、ORF2,反义启动子(ASP)能够启动与LINE-1方向相反的转录物转录。B:m6A修饰酶影响LINE-1复制周期模式图。①LINE-1 DNA可能富集6mA甲基化修饰,抑制mRNA转录;②LINE-1 mRNA与ORF1p、ORF2p结合生成LINE-1 RNP复合物,入核后进行“TPRT”生成cDNA,插入宿主基因组;③在细胞质中,翻译起始因子eIF3与m6A特异性相互作用,提高翻译水平;④METTL3、YTHDC1促进LINE-1逆转座,ALKBH5、SAFB/SAFB2抑制LINE-1逆转座;⑤SAFB/SAFB2可纠正MILs对重要宿主基因的转录阻断。"
| [1] |
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, International Human Genome Sequencing Consortium.. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921.
doi: 10.1038/35057062 |
| [2] |
Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res, 2008, 18(3): 343-358.
doi: 10.1101/gr.5558208 pmid: 18256243 |
| [3] |
Goodier JL, Kazazian HH. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell, 2008, 135(1): 23-35.
doi: 10.1016/j.cell.2008.09.022 pmid: 18854152 |
| [4] |
Babushok DV, Kazazian HH. Progress in understanding the biology of the human mutagen LINE-1. Hum Mutat, 2007, 28(6): 527-539.
doi: 10.1002/humu.20486 pmid: 17309057 |
| [5] |
Zhang X, Zhang R, Yu JP. New understanding of the relevant role of LINE-1 retrotransposition in human disease and immune modulation. Front Cell Dev Biol, 2020, 8: 657.
doi: 10.3389/fcell.2020.00657 pmid: 32850797 |
| [6] |
Jachowicz JW, Bing XY, Pontabry J, Bošković A, Rando OJ, Torres-Padilla ME. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet, 2017, 49(10): 1502-1510.
doi: 10.1038/ng.3945 pmid: 28846101 |
| [7] | Mao Y, Li XY. Advances in the study of LINE-1 retrotransposition in nervous system. China Med Her, 2019, 16(5): 27-29, 46. |
| 毛洋, 李晓宇. 神经系统中LINE-1转座的研究进展. 中国医药导报, 2019, 16(5): 27-29, 46. | |
| [8] |
Ponomaryova AA, Rykova EY, Gervas PA, Cherdyntseva NV, Mamedov IZ, Azhikina TL. Aberrant methylation of LINE-1 transposable elements: a search for cancer biomarkers. Cells, 2020, 9(9): 2017.
doi: 10.3390/cells9092017 |
| [9] |
Burns KH. Our conflict with transposable elements and its implications for human disease. Annu Rev Pathol, 2020, 15: 51-70.
doi: 10.1146/annurev-pathmechdis-012419-032633 pmid: 31977294 |
| [10] |
Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age- associated diseases. Nature, 2021, 596(7870): 43-53.
doi: 10.1038/s41586-021-03542-y |
| [11] | Liu Q, Wang JH, Li XY, Cen S. The connection between LINE-1 retrotransposition and human tumorigenesis. Hereditas(Beijing), 2016, 38(2): 93-102. |
| 刘茜, 王瑾晖, 李晓宇, 岑山. 逆转录转座子LINE-1与肿瘤的发生和发展. 遗传, 2016, 38(2): 93-102. | |
| [12] |
Ostertag EM, Goodier JL, Zhang Y, Kazazian HH. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet, 2003, 73(6): 1444-1451.
doi: 10.1086/380207 pmid: 14628287 |
| [13] |
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 2012, 13(7): 484-492.
doi: 10.1038/nrg3230 pmid: 22641018 |
| [14] |
Fukuda K, Shinkai Y. SETDB1-mediated silencing of retroelements. Viruses, 2020, 12(6): 596.
doi: 10.3390/v12060596 |
| [15] |
Hamdorf M, Idica A, Zisoulis DG, Gamelin L, Martin C, Sanders KJ, Pedersen IM. miR-128 represses L1 retrotransposition by binding directly to L1 RNA. Nat Struct Mol Biol, 2015, 22(10): 824-831.
doi: 10.1038/nsmb.3090 pmid: 26367248 |
| [16] |
De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, Funaya C, Antony C, Moreira PN, Enright AJ, O’Carroll D. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature, 2011, 480(7376): 259-263.
doi: 10.1038/nature10547 |
| [17] |
Choi J, Hwang SY, Ahn K. Interplay between RNASEH2 and MOV10 controls LINE-1 retrotransposition. Nucleic Acids Res, 2018, 46(4): 1912-1926.
doi: 10.1093/nar/gkx1312 pmid: 29315404 |
| [18] |
Goodier JL. Restricting retrotransposons: a review. Mob DNA, 2016, 7: 16.
doi: 10.1186/s13100-016-0070-z |
| [19] |
Hu SQ, Li J, Xu FW, Mei S, Le Duff Y, Yin LJ, Pang XJ, Cen S, Jin Q, Liang C, Guo F. SAMHD1 inhibits LINE-1 retrotransposition by promoting stress granule formation. PLoS Genet, 2015, 11(7): e1005367.
doi: 10.1371/journal.pgen.1005367 |
| [20] | Dunn DB, Smith JD.Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature, 1955, 175(4451): 336-337. |
| [21] | Littlefield JW, Dunn DB. Natural occurrence of thymine and three methylated adenine bases in several ribonucleic acids. Nature, 1958, 181(4604): 254-255. |
| [22] |
Adler M, Weissmann B, Gutman AB. Occurrence of methylated purine bases in yeast ribonucleic acid. J Biol Chem, 1958, 230(2): 717-723.
pmid: 13525389 |
| [23] |
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA, 1974, 71(10): 3971-3975.
doi: 10.1073/pnas.71.10.3971 pmid: 4372599 |
| [24] |
Sun T, Wu RY, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother, 2019, 112: 108613.
doi: 10.1016/j.biopha.2019.108613 |
| [25] |
Shi HL, Wei JB, He C. Where, when, and how: context- dependent functions of RNA methylation writers, readers, and erasers. Mol Cell, 2019, 74(4): 640-650.
doi: 10.1016/j.molcel.2019.04.025 |
| [26] | Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, Wang X, Ma HL, Huang CM, Yang Y, Huang N, Jiang GB, Wang HL, Zhou Q, Wang XJ, Zhao YL, Yang YG.Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell, 2016, 61(4): 507-519. |
| [27] |
Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res, 2017, 45(19): 11356-11370.
doi: 10.1093/nar/gkx778 pmid: 28977517 |
| [28] |
Roundtree IA, Luo GZ, Zhang ZJ, Wang X, Zhou T, Cui YQ, Sha JH, Huang XX, Guerrero L, Xie P, He E, Shen B, He C. YTHDC1 mediates nuclear export of N6- methyladenosine methylated mRNAs. eLife, 2017, 6: e31311.
doi: 10.7554/eLife.31311 |
| [29] |
Wang X, Lu ZK, Gomez A, Hon GC, Yue YN, Han DL, Fu Y, Parisien M, Dai Q, Jia GF, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505(7481): 117-120.
doi: 10.1038/nature12730 |
| [30] |
Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res, 2018, 28(6): 616-624.
doi: 10.1038/s41422-018-0040-8 |
| [31] |
Wang X, Zhao BS, Roundtree IA, Lu ZK, Han DL, Ma HH, Weng XC, Chen K, Shi HL, He C. N6-methyladenosine modulates messenger RNA translation efficiency. Cell, 2015, 161(6): 1388-1399.
doi: 10.1016/j.cell.2015.05.014 |
| [32] |
Shi HL, Wang X, Lu ZK, Zhao BS, Ma HH, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res, 2017, 27(3): 315-328.
doi: 10.1038/cr.2017.15 |
| [33] |
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5′ UTR m6A promotes cap-independent translation. Cell, 2015, 163(4): 999-1010.
doi: 10.1016/j.cell.2015.10.012 pmid: 26593424 |
| [34] |
Boulias K, Greer EL. Biological roles of adenine methylation in RNA. Nat Rev Genet, 2023, 24(3): 143-160.
doi: 10.1038/s41576-022-00534-0 |
| [35] |
McGraw S, Vigneault C, Sirard MA. Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovine in vitro embryo development. Reproduction, 2007, 133(3): 597-608.
doi: 10.1530/REP-06-0251 pmid: 17379654 |
| [36] |
Deng JH, Chen XH, Chen AD, Zheng XC. m6A RNA methylation in brain injury and neurodegenerative disease. Front Neurol, 2022, 13: 995747.
doi: 10.3389/fneur.2022.995747 |
| [37] |
Xu ZJ, Lv BB, Qin Y, Zhang B. Emerging roles and mechanism of m6A methylation in cardiometabolic diseases. Cells, 2022, 11(7): 1101.
doi: 10.3390/cells11071101 |
| [38] |
Wilkinson E, Cui YH, He YY. Context-dependent roles of RNA modifications in stress responses and diseases. Int J Mol Sci, 2021, 22(4): 1949.
doi: 10.3390/ijms22041949 |
| [39] |
Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM, Chen ZS. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer, 2022, 21(1): 52.
doi: 10.1186/s12943-022-01510-2 |
| [40] |
Loh D, Reiter RJ. Melatonin: regulation of viral phase separation and epitranscriptomics in post-acute sequelae of COVID-19. Int J Mol Sci, 2022, 23(15): 8122.
doi: 10.3390/ijms23158122 |
| [41] |
Pan YT, Ma P, Liu Y, Li W, Shu YQ. Multiple functions of m6A RNA methylation in cancer. J Hematol Oncol, 2018, 11(1): 48.
doi: 10.1186/s13045-018-0590-8 |
| [42] |
An YY, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer, 2022, 21(1): 14.
doi: 10.1186/s12943-022-01500-4 pmid: 35022030 |
| [43] |
Zhu FY, Yang TR, Yao MF, Shen T, Fang CY. HNRNPA2B1, as a m6A reader, promotes tumorigenesis and metastasis of oral squamous cell carcinoma. Front Oncol, 2021, 11: 716921.
doi: 10.3389/fonc.2021.716921 |
| [44] |
Dmitriev SE, Andreev DE, Terenin IM, Olovnikov IA, Prassolov VS, Merrick WC, Shatsky IN. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5′ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol Cell Biol, 2007, 27(13): 4685-4697.
pmid: 17470553 |
| [45] |
Hwang SY, Jung H, Mun S, Lee S, Park K, Baek SC, Moon HC, Kim H, Kim B, Choi Y, Go YH, Tang WXF, Choi J, Choi JK, Cha HJ, Park HY, Liang P, Kim VN, Han K, Ahn K. L1 retrotransposons exploit RNA m6A modification as an evolutionary driving force. Nat Commun, 2021, 12(1): 880.
doi: 10.1038/s41467-021-21197-1 |
| [46] |
Xiong F, Wang RY, Lee JH, Li SL, Chen SF, Liao ZA, Hasani LA, Nguyen PT, Zhu XY, Krakowiak J, Lee DF, Han L, Tsai KL, Liu Y, Li WB. RNA m6A modification orchestrates a LINE-1-host interaction that facilitates retrotransposition and contributes to long gene vulnerability. Cell Res, 2021, 31(8): 861-885.
doi: 10.1038/s41422-021-00515-8 pmid: 34108665 |
| [47] |
Billon V, Cristofari G. Nascent RNA m6A modification at the heart of the gene-retrotransposon conflict. Cell Res, 2021, 31(8): 829-831.
doi: 10.1038/s41422-021-00518-5 |
| [48] |
Niehrs C, Luke B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol, 2020, 21(3): 167-178.
doi: 10.1038/s41580-019-0206-3 |
| [49] |
Mita P, Wudzinska A, Sun XJ, Andrade J, Nayak S, Kahler DJ, Badri S, LaCava J, Ueberheide B, Yun CY, Fenyö D, Boeke JD. LINE-1 protein localization and functional dynamics during the cell cycle. eLife, 2018, 7: e30058.
doi: 10.7554/eLife.30058 |
| [50] |
Abakir A, Giles TC, Cristini A, Foster JM, Dai N, Starczak M, Rubio-Roldan A, Li MM, Eleftheriou M, Crutchley J, Flatt L, Young L, Gaffney DJ, Denning C, Dalhus B, Emes RD, Gackowski D, Corrêa IR, Garcia-Perez JL, Klungland A, Gromak N, Ruzov A. N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat Genet, 2020, 52(1): 48-55.
doi: 10.1038/s41588-019-0549-x |
| [51] |
Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev, 2014, 28(13): 1384-1396.
doi: 10.1101/gad.242990.114 |
| [52] |
García-Muse T, Aguilera A. R loops: from physiological to pathological roles. Cell, 2019, 179(3): 604-618.
doi: S0092-8674(19)31006-2 pmid: 31607512 |
| [53] |
Duda KJ, Ching RW, Jerabek L, Shukeir N, Erikson G, Engist B, Onishi-Seebacher M, Perrera V, Richter F, Mittler G, Fritz K, Helm M, Knuckles P, Bühler M, Jenuwein T. m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Res, 2021, 49(10): 5568-5587.
doi: 10.1093/nar/gkab364 |
| [54] |
Kong YM, Cao L, Deikus G, Fan Y, Mead EA, Lai WY, Zhang YZ, Yong R, Sebra R, Wang HL, Zhang XS, Fang G. Critical assessment of DNA adenine methylation in eukaryotes using quantitative deconvolution. Science, 2022, 375(6580): 515-522.
doi: 10.1126/science.abe7489 pmid: 35113693 |
| [55] |
Chen LQ, Zhang Z, Chen HX, Xi JF, Liu XH, Ma DZ, Zhong YH, Ng WH, Chen T, Mak DW, Chen Q, Chen YQ, Luo GZ. High-precision mapping reveals rare N6- deoxyadenosine methylation in the mammalian genome. Cell Discov, 2022, 8(1): 138.
doi: 10.1038/s41421-022-00484-1 pmid: 36575183 |
| [56] |
Wu TP, Wang T, Seetin MG, Lai YQ, Zhu SJ, Lin KX, Liu YF, Byrum SD, Mackintosh SG, Zhong M, Tackett A, Wang GL, Hon LS, Fang G, Swenberg JA, Xiao AZ. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature, 2016, 532(7599): 329-333.
doi: 10.1038/nature17640 |
| [57] |
Bailey JA, Carrel L, Chakravarti A, Eichler EE. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA, 2000, 97(12): 6634-6639.
doi: 10.1073/pnas.97.12.6634 pmid: 10841562 |
| [58] |
Liu J, Dou XY, Chen CY, Chen C, Liu C, Xu MM, Zhao SQ, Shen B, Gao YW, Han DL, He C. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science, 2020, 367(6477): 580-586.
doi: 10.1126/science.aay6018 pmid: 31949099 |
| [59] |
Liu JD, Gao MW, He JP, Wu KX, Lin SY, Jin LM, Chen YP, Liu H, Shi JJ, Wang XW, Chang L, Lin YY, Zhao YL, Zhang XF, Zhang M, Luo GZ, Wu GM, Pei DQ, Wang J, Bao XC, Chen JK. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature, 2021, 591(7849): 322-326.
doi: 10.1038/s41586-021-03313-9 |
| [60] |
Selmi T, Lanzuolo C. Driving chromatin organisation through N6-methyladenosine modification of RNA: what do we know and what lies ahead? Genes (Basel), 2022, 13(2): 340.
doi: 10.3390/genes13020340 |
| [61] |
Percharde M, Lin CJ, Yin YF, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen XH, Ramalho-Santos M. A LINE1-Nucleolin partnership regulates early development and ESC identity. Cell, 2018, 174(2): 391-405.e19.
doi: S0092-8674(18)30655-X pmid: 29937225 |
| [62] |
Chen C, Liu WQ, Guo JY, Liu YY, Liu XL, Liu J, Dou XY, Le RR, Huang YX, Li C, Yang LY, Kou XC, Zhao YH, Wu Y, Chen JY, Wang H, Shen B, Gao YW, Gao SR. Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein Cell, 2021, 12(6): 455-474.
doi: 10.1007/s13238-021-00837-8 |
| [63] | Sommerkamp P. Substrates of the m6A demethylase FTO: FTO-LINE1 RNA axis regulates chromatin state in mESCs. Signal Transduct Target Ther, 2022, 7(1): 212. |
| [64] |
Wei JB, Yu XB, Yang L, Liu XL, Gao BY, Huang BX, Dou XY, Liu J, Zou ZY, Cui XL, Zhang LS, Zhao XS, Liu QZ, He PC, Sepich-Poore C, Zhong N, Liu WQ, Li YH, Kou XC, Zhao YH, Wu Y, Cheng XJ, Chen C, An YM, Dong XY, Wang HY, Shu Q, Hao ZY, Duan T, He YY, Li XK, Gao SR, Gao YW, He C. FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development. Science, 2022, 376(6596): 968-973.
doi: 10.1126/science.abe9582 |
| [65] |
Li Y, Xia LJ, Tan KF, Ye XD, Zuo ZX, Li MC, Xiao R, Wang ZH, Liu XN, Deng MQ, Cui JR, Yang MT, Luo QZ, Liu S, Cao X, Zhu HR, Liu TQ, Hu JX, Shi JF, Xiao S, Xia LX. N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet, 2020, 52(9): 870-877.
doi: 10.1038/s41588-020-0677-3 |
| [66] |
Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, Dossin F, Fouassier C, Lameiras S, Bourc’his D. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature, 2021, 591(7849): 312-316.
doi: 10.1038/s41586-020-03135-1 |
| [67] |
Rodic N. LINE-1 activity and regulation in cancer. Front Biosci (Landmark Ed), 2018, 23(9): 1680-1686.
doi: 10.2741/4666 pmid: 29293456 |
| [68] |
Gu ZM, Liu YX, Zhang Y, Cao H, Lyu JH, Wang X, Wylie A, Newkirk SJ, Jones AE, Lee M, Botten GA, Deng M, Dickerson KE, Zhang CC, An WF, Abrams JM, Xu J. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nat Genet, 2021, 53(5): 672-682.
doi: 10.1038/s41588-021-00829-8 pmid: 33833453 |
| [1] | 谢盈盈, 王克剑, 饶玉春, 黄勇. 发育调节因子助力作物遗传转化效率提升[J]. 遗传, 2025, 47(9): 992-1006. |
| [2] | 李慧, 郭莉娟, 周贺霞, 李春阳, 代佳琳, 谌立祝, 张锐, 孙丰慧. 链霉菌较小基因组构建的研究进展[J]. 遗传, 2025, 47(7): 756-767. |
| [3] | 张祖铭, 周豪, 黄学治, 张多悦, 张佳怡, 林昱, 方立崴, 张秀昌, 崔玉军, 武雅蓉, 李艳君. 基于多类型变异的炭疽芽孢杆菌群体基因组学研究[J]. 遗传, 2025, 47(6): 681-693. |
| [4] | 权静, 肖艳群, 卢大儒, 鲍芸. 基因组光学图谱技术在疾病诊断中的应用与研究[J]. 遗传, 2025, 47(4): 428-436. |
| [5] | 陈敏, 韩娜, 缪玉, 强裕俊, 张雯, 刘蓬勃, 刘起勇, 栗冬梅. 物种分化因素影响下的巴尔通体差异转录组分析[J]. 遗传, 2025, 47(3): 366-381. |
| [6] | 卢宇蓝, 李国壮, 王雅琼, 徐可欣, 董欣然, 蔡继昊, 吴冰冰, 王慧君, 方萍, 王剑, 王华, 孙路明, 叶勇裕, 李晴, 刘雅萍, 刘丽, 刘宁, 刘嘉琦, 宋昉, 杨琳, 邱正庆, 陈泽夫, 罗华夏, 郭丹, 郝婵娟, 赵森, 黄尚志, 彭镜, 蔡小强, 睢瑞芳, 李林康, 吴南, 周文浩, 张抒扬. 临床基因组测序解读与报告专家共识[J]. 遗传, 2025, 47(3): 314-328. |
| [7] | 沈洁宇, 苏天晗, 余大奇, 谭生军, 张勇. 基因重复驱动的演化:基因组学时代的回顾与展望[J]. 遗传, 2025, 47(2): 147-171. |
| [8] | 任佳琳, 童依泽, 蔡瑞. 染色质相关RNA的m6A修饰调控染色质可及性与基因转录研究进展[J]. 遗传, 2025, 47(11): 1186-1196. |
| [9] | 杨琪, 康克莱, 赵博, 冯凯, 冯耀森, 叶健, 邓晔, 王乐. 基于宏基因组鸟枪测序的中国典型城市灰尘地域推断研究[J]. 遗传, 2025, 47(10): 1156-1168. |
| [10] | 吴宏, 章誉兴, 于黎. 动物物种形成研究进展[J]. 遗传, 2025, 47(1): 58-70. |
| [11] | 王则夫, 刘建全. 基因组时代的物种形成研究[J]. 遗传, 2025, 47(1): 71-100. |
| [12] | 张达轩, 戴沈汝, 崔银秋. 古基因组视角下的亚洲北部人群迁徙和演化机制[J]. 遗传, 2025, 47(1): 34-45. |
| [13] | 平婉菁, 薛家旸, 付巧妹. 古DNA解析东亚南北方人群的迁徙与演化历史[J]. 遗传, 2025, 47(1): 18-33. |
| [14] | 鲍艳春, 石彩霞, 张传强, 谷明娟, 朱琳, 刘在霞, 周乐, 马凤英, 娜日苏, 张文广. 深度学习在基因组学中的研究进展[J]. 遗传, 2024, 46(9): 701-715. |
| [15] | 胡玉龙, 杨芳, 陈彦潼, 谌烁楷, 闫煜博, 张跃博, 吴晓林, 汪加明, 何俊, 高宁. 整合mRNA转录本与基因组信息的基因组选择方法研究[J]. 遗传, 2024, 46(7): 560-569. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: