[1] the Wellcome Trust Case Control Consortium. Ge-nome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 2007, 447(7145): 661-678. [2] Thomson W, Barton A, Ke XY, Eyre S, Hinks A, Bowes J, Donn R, Symmons D, Hider S, Bruce IN, Wilson AG, Marinou I, Morgan A, Emery P, YEAR Consortium, Carter A, Steer S, Hocking L, Reid DM, Wordsworth P, Harrison P, Strachan D, Worthington J. Rheumatoid arthritis association at 6q23. Nat Genet, 2007, 39(12): 1431-1433. [3] Barton A, Thomson W, Ke XY, Eyre S, Hinks A, Bowes J, Plant D, Gibbons LJ, Wellcome Trust Case Control Con-sortium, YEAR Consortium, BIRAC Consortium, Wilson AG, Bax DE, Morgan AW, Emery P, Steer S, Hocking L, Reid DM, Wordsworth P, Harrison P, Worthington J. Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13. Nat Genet, 2008, 40(10): 1156-1159. [4] Eeles RA, Kote-Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G, Muir K, Hopper JL, Henderson BE, Haiman CA, Schleutker J, Hamdy FC, Neal DE, Donovan JL, Stanford JL, Ostrander EA, Ingles SA, John EM, Thibodeau SN, Schaid D, Park JY, Spurdle A, , The UK Genetic Prostate Cancer Study Collaborators/British Association of Urological Surgeons' Section of Oncology, The UK ProtecT Study Collaborators, The PRACTICAL Consor-tium, Easton DF. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat Genet, 2009, 41(10): 1116-1121. [5] Sun LD, Cheng H, Wang ZX, Zhang AP, Wang PG, Xu JH, Zhu QX, Zhou HS, Ellinghaus E, Zhang FR, Pu XM . Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet. 2010, 42(11): 1005–1009. [6] Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet, 2008, 40(5): 638-645. [7] Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS. Genome-wide association defines more than 30 distinct sus-ceptibility loci for Crohn's disease. Nat Genet, 2008, 40(8): 955-962. [8] De Jager PL, Jia XM, Wang J, de Bakker PIW, Ottoboni L, Aggarwal NT, Piccio L, Raychaudhuri S, Tran D, Aubin C, Briskin R, Romano S, International MS Genetics Consor-tium, Baranzini SE, McCauley JL, Pericak-Vance MA, Haines JL, Gibson RA, Naeglin Y, Uitdehaag B, Matthews PM, Kappos L, Polman C, McArdle WL, Strachan DP, Evans D, Cross AH, Daly MJ, Compston A, Sawcer SJ, Weiner HL, Hauser SL, Hafler DA, Oksenberg JR. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis sus-ceptibility loci. Nat Genet, 2009, 41(7): 776-782. [9] Raychaudhuri S, Remmers EF, Lee AT, Hackett R, Guiducci C, Burtt NP, Gianniny L, Korman BD, Padyukov L, Kurreeman FAS, Chang M, Catanese JJ, Ding B, Wong S, van der Helm-van Mil AHM, Neale BM, Coblyn J, Cui J, Tak PP, Wolbink GJ, Crusius JBA, van der Horst-Bruinsma IE, Criswell LA, Amos CI, Seldin MF, Kastner DL, Ardlie KG, Alfredsson L, Costenbader KH, Altshuler D, Huizinga TWJ, Shadick NA, Weinblatt ME, de Vries N, Worthington J, Seielstad M, Toes REM, Karl-son EW, Begovich AB, Klareskog L, Gregersen PK, Daly MJ, Plenge RM. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet, 2008, 40(10): 1216-1223. [10] Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MCC, Lubbe S, Chandler I. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet, 2008, 40(12): 1426-1435. [11] Ioannidis JP, Patsopoulos NA, Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS One, 2007, 2(9): e841. [12] Pei YF, Li J, Zhang L, Papasian CJ, Deng HW. Analyses and comparison of accuracy of different genotype imputation methods. PLoS One, 2008, 3(10): e3551. [13] Browning SR. Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet, 2008, 124(5): 439-450. [14] Stadler ZK, Thom P, Robson ME, Weitzel JN, Kauff ND, Hurley KE, Devlin V, Gold B, Klein RJ, Offit K. Genome-wide association studies of cancer. J Clin Oncol, 2010, 28(27): 4255-4267. [15] Kochi Y, Okada Y, Suzuki A, Ikari K, Terao C, Takahashi A, Yamazaki K, Hosono N, Myouzen K, Tsunoda T, Ka-matani N, Furuichi T, Ikegawa S, Ohmura K, Mimori T, Matsuda F, Iwamoto T, Momohara S, Yamanaka H, Ya-mada R, Kubo M, Nakamura Y, Yamamoto K. A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat Genet, 2010, 42(6): 515-519. [16] Jin Y, Birlea SA, Fain PR, Mailloux CM, Riccardi SL, Gowan K, Holland PJ, Bennett DC, Wallace MR, McCormack WT, Kemp EH, Gawkrodger DJ, Weetman AP, Picardo M, Leone G, Taïeb A, Jouary T, Ezzedine K, van Geel N, Lambert J, Overbeck A, Spritz RA. Common variants in FOXP1 are associated with generalized vitiligo. Nat Genet, 2010, 42(7): 576-578. [17] Quan C, Ren YQ, Xiang LH, Sun LD, Xu AE, Gao XH, Chen HD, Pu XM, Wu RN, Liang CZ, Li JB, Gao TW, Zhang JZ, Wang XL, Wang J, Yang RY, Liang L, Yu JB, Zuo XB, Zhang SQ, Zhang SM, Chen G, Zheng XD, Li P, Zhu J, Li YW, Wei XD, Hong WS, Ye Y, Zhang Y, Wu WS, Cheng H, Dong PL, Hu DY, Li Y, Li M, Zhang X, Tang HY, Tang XF, Xu SX, He SM, Lv YM, Shen M, Jiang HQ, Wang Y, Li K, Kang XJ, Liu YQ, Sun L, Liu ZF, Xie SQ, Zhu CY, Xu Q, Gao JP, Hu WL, Ni C, Pan TM, Yao S, He CF, Liu YS, Yu ZY, Yin XY, Zhang FY, Yang S, Zhou Y, Zhang XJ. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet, 2010, 42(7): 614-618. [18] Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet, 2009, 41(2): 221-227. [19] Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, Beckwith CA, Chan JA, Hills A, Davis M, Yao KL, Kehoe SM, Lenz HJ, Haiman CA, Yan CL, Hen-derson BE, Frenkel B, Barretina J, Bass A, Tabernero J, Baselga J, Regan MM, Manak JR, Shivdasani R, Coetzee GA, Freedman ML. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet, 2009, 41(8): 882-884. [20] Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanha-ranta S, Kivioja T, Björklund M, Wei GH, Yan J, Niitty-maki I, Mecklin JP, Järvinen H, Ristimäki A, Di-Bernardo M, East P, Carvajal-Carmona L, Houlston RS, Tomlinson I, Palin K, Ukkonen E, Karhu A, Taipale J, Aaltonen LA. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to en-hanced Wnt signaling. Nat Genet, 2009, 41(8): 885-890. [21] Burton PR, Clayton DG, Cardon LR, Craddock N, Delou-kas P. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet, 2007, 39(11): 1329-1337. [22] Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A. A second generation human haplotype map of over 3.1 million SNPs. Nature, 2007, 449(7164): 851-861. [23] McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, Goyette P, Zody MC, Hall JL, Brant SR, Cho JH, Duerr RH, Silverberg MS, Taylor KD, Rioux JD, Altshuler D, Daly MJ, Xavier RJ. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat Genet, 2008, 40(9): 1107-1112. [24] Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science, 2009, 324(5925): 387-389. [25] Johansen CT, Wang J, Lanktree MB, Cao HN, McIntyre AD, Ban MR, Martins RA, Kennedy BA, Hassell RG, Visser ME, Schwartz SM, Voight BF, Elosua R, Salomaa V, O'Donnell CJ, Dallinga-Thie GM, Anand SS, Yusuf S, Huff MW, Kathiresan S, Hegele RA. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet, 42(8): 684-687. [26] Wang K, Li MY, Bucan M. Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet, 2007, 81(6): 1278-1283. [27] Eleftherohorinou H, Wright V, Hoggart C, Hartikainen AL, Jarvelin MR, Balding D, Coin L, Levin M. Pathway analysis of GWAS provides new insights into genetic sus-ceptibility to 3 inflammatory diseases. PLoS One, 2009, 4(11): e8068. [28] Jia P, Wang L, Meltzer HY, Zhao Z. Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data. Schizophr Res, 2010, 122(1/3): 38-42. [29] Menashe I, Maeder D, Garcia-Closas M, Figueroa JD, Bhattacharjee S, Rotunno M, Kraft P, Hunter DJ, Chanock SJ, Rosenberg PS, Chatterjee N. Pathway analysis of breast cancer genome-wide association study highlights three pathways and one canonical signaling cascade. Cancer Res, 2010, 70(11): 4453-4459. [30] Engelman CD, Baurley JW, Chiu YF, Joubert BR, Lewinger JP, Maenner MJ, Murcray CE, Shi G, Gauderman WJ. De-tecting gene-environment interactions in genome-wide association data. Genet Epidemiol, 2009, 33(Suppl 1): S68-S73. [31] Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet, 2010, 86(1): 6-22. [32] Tang WW, Wu XB, Jiang R, Li YD. Epistatic module detection for case-control studies: a Bayesian model with a Gibbs sampling strategy. PLoS Genet, 2009, 5(5): e1000464. [33] Le Marchand L, Hankin JH, Wilkens LR, Pierce LM, Franke A, Kolonel LN, Seifried A, Custer LJ, Chang W, Lum-Jones A, Donlon T. Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phe-notypes in increasing colorectal cancer risk. Cancer Epide-miol Biomarkers Prev, 2001, 10(12): 1259-1266. [34] García-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, Hein DW, Tardón A, Serra C, Carrato A, García-Closas R, Lloreta J, Castaño-Vinyals G, Yeager M, Welch R, Chanock S, Chatterjee N, Wacholder S, Samanic C, Torà M, Fernández F, Real FX, Rothman N. NAT2 slow acetyla-tion, GSTM1 null genotype, and risk of bladder cancer: re-sults from the Spanish Bladder Cancer Study and meta-analyses. Lancet, 2005, 366(9486): 649-659. [35] Thomas D. Gene-environment-wide association studies: emerging approaches. Nat Rev Genet, 2010, 11(4): 259-272. [36] Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Me-hta JP, Collins FS, Manolio TA. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA, 2009, 106(23): 9362-9367. [37] Ku CS, Loy EY, Pawitan Y, Chia KS. The pursuit of genome-wide association studies: where are we now? J Hum Genet, 2010, 55(4): 195-206. [38] 韩建文, 张学军. 全基因组关联研究现状. 遗传, 2011, 33(1): 25-35. |