[1] Bailey LW. Biological processes in the formation of wood. Science, 1952, 115(2984): 255-259.[2] Sundberg B, Uggla C, Tuominen H. Cambial growth and auxin gradients. In: Savidge R, Barnett J, Napier R, eds. Cell and Molecular Biology of Wood Formation. Oxford: BIOS, 2000: 169-188.[3] Savidge RA, Wareing PF. A tracheid-differentiation factor from pine needles. Planta, 1981, 153(5): 395-404.[4] Savidge RA. The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. Histochem J, 1983, 15(5): 447-466.[5] Little CHA, Savidge RA. The role of plant growth regulators in forest tree cambial growth. Plant Growth Regul, 1987, 6(1-2): 137-169.[6] Leitch MA, Savidge RA. Evidence for auxin regulation of bordered-pit positioning during tracheid differentiation in Larix laricina. IAWA J, 1995, 16(3): 289-297.[7] Little CHA, Pharis RP. Hormonal control of radial and longitudinal growth in the tree stem. In: Gartner BL, ed. Plant Stems: Physiology and Functional Morphology. San Diego: Academic Press, 1995: 281-319.[8] Savidge RA. Intrinsic regulation of cambial growth. J Plant Growth Regul, 2000, 20 (1): 52-77.[9] Sundberg B, Tuominen H, Little C. Effects of the indole-3-acetic acid (IAA) transport inhibitors N-1-naphthylphthalamic acid and morphactin on endogenous IAA dynamics in relation to compression wood formation in 1-year-old Pinus sylvestris (L.) Shoots. Plant Physiol, 1994, 106(2): 469-476.[10] Tuominen H, Sitbon F, Jakobsson C, Sandberg G, Olsson O, Sundberg B. Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthesis genes. Plant Physiol, 1995, 109(4): 1179-1189.[11] Uggla C, Moritz T, Sandberg G, Sundberg B. Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA, 1996, 93(17): 9282-9286.[12] Tuominen H, Puech L, Fink S, Sundberg B. A radial con-centration gradient of indole-3- acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol, 1997, 115(2): 577-585.[13] Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP, Sandberg G. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA, 2003, 100(17): 10096- 100101.[14] Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP. Dissecting the molecular basis of the regulation of wood formation by auxin in Hybrid Aspen. Plant Cell, 2008, 20(4): 843-855.[15] Chang SJ, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 1993, 11(2): 113-116.[16] Schoof H, Zaccaria P, Gundlach H, Lemcke K, Rudd S, Kolesov G, Arnold R, Mewes HW, Mayer KFX. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome. Nucleic Acid Res, 2002, 30(1): 91- 93.[17] Fisher K, Turner S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue de-velopment. Curr Biol, 2007, 17(12): 1061-1066.[18] Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fu-kuda H. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA, 2008, 105(39): 15208-15213.[19] Etchells JP, Turner SR. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development, 2010, 137(5): 767-774.[20] Ji JB, Strable J, Shimizu |