遗传 ›› 2020, Vol. 42 ›› Issue (12): 1178-1191.doi: 10.16288/j.yczz.20-207
郑婷1, 甘麦邻1, 沈林園1, 牛丽莉1, 郭宗义2, 王金勇2, 张顺华1(), 朱砺1()
收稿日期:
2020-07-06
修回日期:
2020-10-13
出版日期:
2020-12-17
发布日期:
2020-12-01
通讯作者:
张顺华,朱砺
E-mail:363445986@qq.com;zhuli7508@163.com
作者简介:
郑婷,在读硕士研究生,专业方向:动物遗传育种。E-mail: 基金资助:
Ting Zheng1, Mailin Gan1, Linyuan Shen1, Lili Niu1, Zongyi Guo2, Jinyong Wang2, Shunhua Zhang1(), Li Zhu1()
Received:
2020-07-06
Revised:
2020-10-13
Online:
2020-12-17
Published:
2020-12-01
Contact:
Zhang Shunhua,Zhu Li
E-mail:363445986@qq.com;zhuli7508@163.com
Supported by:
摘要:
环状RNA (circular RNA, circRNA)是一类反向剪接形成的闭合环状RNA分子,广泛存在于生物体内,近年来成为非编码RNA中的研究热点。骨骼肌在生物体中起到协调运动的作用,是维持体内正常代谢和内分泌的器官之一。随着测序技术和生物信息学分析技术的发展,circRNA在动物骨骼肌发育中的功能和调控机制逐渐被揭示。本文就当前circRNA的分子调控机制类型、circRNA经典研究思路及功能研究方法以及circRNA参与骨骼肌正常发育与骨骼肌疾病发生调控的研究进展进行了综述,以期为进一步深入研究circRNA参与骨骼肌生长发育调控的遗传机制以及circRNA相关研究方法提供参考。
郑婷, 甘麦邻, 沈林園, 牛丽莉, 郭宗义, 王金勇, 张顺华, 朱砺. circRNA及其调控动物骨骼肌发育研究进展[J]. 遗传, 2020, 42(12): 1178-1191.
Ting Zheng, Mailin Gan, Linyuan Shen, Lili Niu, Zongyi Guo, Jinyong Wang, Shunhua Zhang, Li Zhu. circRNA on animal skeletal muscle development regulation[J]. Hereditas(Beijing), 2020, 42(12): 1178-1191.
Table 1
circRNAs involved in the regulation of skeletal muscle development in different animals"
circRNA | 物种 | 可能作用机制 | 生物学功能 | 参考文献 | |
---|---|---|---|---|---|
circZNF609 | 人(Homo sapiens) | 编码蛋白质 | 促进成肌细胞增殖 | [28] | |
circZNF609 | 小鼠(Mus musculus) | 编码蛋白质 | 促进成肌细胞增殖 | [28] | |
circLMO7 | 牛(Bos taurus) | 吸附miR-378-3p,靶基因为HDAC4 | 促进成肌细胞增殖, 抑制分化和凋亡 | [70] | |
circRBFOX2 | 鸡(Gallus gallus) | 吸附miR-206,靶基因为CCND2 | 促进成肌细胞增殖 | [74] | |
circFUT10 | 牛(Bos taurus) | 吸附miR-133a,靶基因为SRF | 抑制成肌细胞增殖, 促进成肌细胞分化 | [75] | |
circSVIL | 鸡(Gallus gallus) | 吸附miR-203,靶基因为c-Jun、MEF2C | 促进成肌细胞增殖、分化 | [76] | |
circFGFR4 | 牛(Bos taurus) | 吸附miR-107,靶基因为Wnt3a | 促进成肌细胞分化,诱导凋亡 | [49] | |
circZfp609 | 小鼠(Mus musculus) | 吸附miR-194-5p,靶基因为BCLAF1 | 抑制成肌细胞分化 | [77] | |
circHIPK3 | 鸡(Gallus gallus) | 吸附miR-30a-3p,靶基因为MEF2C | 促进成肌细胞增殖、分化 | [50] | |
circFoxO3 | 小鼠(Mus musculus) | 吸附miR-138-5p | 抑制成肌细胞分化 | [78] | |
circSNX29 | 牛(Bos taurus) | 吸附miR-744,靶基因为Wnt5a | 抑制成肌细胞增殖、促进成 肌细胞分化 | [79] | |
circTMTC1 | 鸡(Gallus gallus) | 吸附miR-128-3p,靶基因为MSTN | 抑制骨骼肌卫星细胞增殖、分化 | [80] | |
circCDR1as | 山羊(Capra hircus) | 吸附miR-7,靶基因为IGF1R | 促进骨骼肌卫星细胞成肌分化 | [81] | |
circTTN | 牛(Bos taurus) | 吸附miR-432,靶基因为IGF2 | 促进成肌细胞增殖、分化 | [82] | |
circHIPK3 | 小鼠(Mus musculus) | 吸附miR-124-5p和miR-379-5p | 促进成肌细胞分化 | [83] | |
circTUT7 | 猪(Sus scrofa) | 吸附miR-30a-3p,靶基因为HMG20B | 促进胚胎肌生成相关基因转录 | [73] | |
circINSR | 牛(Bos taurus) | 吸附miR-34a,靶基因为Bcl-2、CyclinE2 | 促进成肌细胞增殖、抑制凋亡 | [51] | |
circHUWE1 | 牛(Bos taurus) | 吸附miR-29b,靶基因为AKT3 | 促进成肌细胞增殖、抑制凋亡 及分化 | [84] | |
circSamd4 | 小鼠(Mus musculus) | 与PUR蛋白结合 | 促进成肌细胞分化 | [85] |
表2
circRNA在肌肉病理过程的表达变化"
circRNA | 物种 | 组织/细胞 | 疾病类型 | 表达模式 | 参考文献 |
---|---|---|---|---|---|
circQKI | 人(Homo sapiens) | 原代肌细胞 | DMD | 下调 | [28] |
circBNC2 | 人(Homo sapiens) | 原代肌细胞 | DMD | 下调 | [28] |
circZFP609 | 人(Homo sapiens) | 原代肌细胞 | DMD | 上调 | [28] |
circCDYL | 人(Homo sapiens) | 骨骼肌组织 | DM1 | 上调 | [103] |
circHIPK3 | 人(Homo sapiens) | 骨骼肌组织 | DM1 | 上调 | [103] |
circRTN4-03 | 人(Homo sapiens) | 骨骼肌/肌源性细胞 | DM1 | 上调 | [103] |
circZFP609 | 人(Homo sapiens) | 骨骼肌/肌源性细胞 | DM1 | 上调 | [103] |
circCAMSAP1 | 小鼠(Mus musculus) | 骨骼肌组织 | DM1 | 上调 | [102] |
circHIPK3 | 小鼠(Mus musculus) | 骨骼肌组织 | DM1 | 上调 | [102] |
circNFATC3 | 小鼠(Mus musculus) | 骨骼肌组织 | DM1 | 上调 | [102] |
circZfp609 | 小鼠(Mus musculus) | 骨骼肌组织 | DM1 | 上调 | [102] |
circBBS9 | 小鼠(Mus musculus) | 骨骼肌组织 | Sarcopenia | 下调 | [104] |
circCAMK2D | 人(Homo sapiens) | 心肌组织 | HCM/DCM | 下调 | [94] |
circTTN | 人(Homo sapiens) | 心肌组织 | DCM | 下调 | [94] |
[1] | Pedersen BK, Febbraio MA . Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol, 2012,8(8):457-465. |
[2] | Chal J, Pourquié O . Making muscle: skeletal myogenesis in vivo and in vitro. Development, 2017,144(12):2104-2122. |
[3] | Chargé SBP, Rudnicki MA . Cellular and molecular regulation of muscle regeneration. Physiol Rev, 2004,84(1):209-238. |
[4] | Epstein HF, Fischman DA . Molecular analysis of protein assembly in muscle development. Science, 1991,251(4997):1039-1044. |
[5] | Wright WE, Sassoon DA, Lin VK . Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell, 1989,56(4):607-617. |
[6] | Rudnicki MA, Braun T, Hinuma S, Jaenisch R . Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell, 1992,71(3):383-390. |
[7] | Wang YN . The roles of MEF2A in the regulation of skeletal muscle myoblasts proliferation and differentiation in Qinchuan beef cattle[Dissertation]. Northwest A&F University, 2019. |
王亚宁 . MEF2A对秦川牛骨骼肌成肌细胞增殖和分化的调控作用及机理研究[学位论文]. 西北农林科技大学, 2019. | |
[8] | Whittemore LA, Song K, Li XP, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, Maylor R, O'hara D, Pearson A, Quazi A, Ryerson S, Tan XY, Tomkinson KN, Veldman GM, Widom A, Wright JF, Wudyka S, Zhao L, Wolfman NM. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun, 2003,300(4):965-971. |
[9] | Buckingham M, Relaix F . The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol, 2007,23:645-673. |
[10] | Li XY, Fu LL, Cheng HJ, Zhao SH . Advances on microRNA in regulating mammalian skeletal muscle development. Hereditas(Beijing), 2017,39(11):1046-1053. |
李新云, 付亮亮, 程会军, 赵书红 . MicroRNA调控哺乳动物骨骼肌发育. 遗传, 2017,39(11):1046-1053. | |
[11] | Zhou R, Wang YX, Long KR, Jiang AA, Jin L . Regulatory mechanism for lncRNAs in skeletal muscle development and progress on its research in domestic animals. Hereditas(Beijing), 2018,40(4):292-304. |
周瑞, 王以鑫, 龙科任, 蒋岸岸, 金龙 . LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展. 遗传, 2018,40(4):292-304. | |
[12] | Zhang PP, Chao Z, Zhang R, Ding RQ, Wang YL, Wu W, Han Q, Li CC, Xu HX, Wang L, Xu YJ . Circular RNA regulation of myogenesis. Cells, 2019,8(8):885. |
[13] | Gao Y, Wang JF, Zheng Y, Zhang JY, Chen S, Zhao FQ . Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun, 2016,7:12060. |
[14] | Shen T, Han M, Wei G, Ni T . An intriguing RNA species—perspectives of circularized RNA. Protein Cell, 2015,6(12):871-880. |
[15] | Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu SS, Yang L, Chen LL . Circular intronic long noncoding RNAs. Mol Cell, 2013,51(6):792-806. |
[16] | Li ZY, Huang C, Bao C, Chen L, Lin M, Wang XL, Zhong GL, Yu B, Hu WC, Dai LM, Zhu PF, Chang ZX, Wu QF, Zhao Y, Jia Y, Xu P, Liu HJ, Shan G . Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 2015,22(3):256-264. |
[17] | Liang GM, Yang YL, Niu GL, Tang ZL, Li K . Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res, 2017,24(5):523-535. |
[18] | Shuai MX, Hong JW, Huang DH, Zhang X, Tian YQ . Upregulation of circRNA_0000285 serves as a prognostic biomarker for nasopharyngeal carcinoma and is involved in radiosensitivity. Oncol Lett, 2018,16(5):6495-6501. |
[19] | Bi W, Huang JY, Nie CL, Liu B, He GQ, Han JH, Pang R, Ding ZM, Xu J, Zhang JW . CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin Cancer Res, 2018,37(1):275. |
[20] | Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Kjems J . The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet, 2019,20(11):675-691. |
[21] | Chen LL . The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol, 2020,21(8):475-490. |
[22] | Das A, Das A, Das D, Abdelmohsen K, Panda AC . Circular RNAs in myogenesis. Biochim Biophys Acta Gene Regul Mech, 2020,1863(4):194372. |
[23] | Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J . Natural RNA circles function as efficient microRNA sponges. Nature, 2013,495(7441):384-388. |
[24] | Yang F, Hu AP, Li D, Wang JQ, Guo YH, Liu Y, Li HJ, Chen YJ, Wang XJ, Huang K, Zheng LD, Tong QS . Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol Cancer, 2019,18(1):158. |
[25] | Piwecka M, GlažAr P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, Trimbuch T, Zywitza V, Plass M, Schreyer L, Ayoub S, Kocks C, Kühn R, Rosenmund C, Birchmeier C, Rajewsky N. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357(6357): eaam8526. |
[26] | Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014,56(1):55-66. |
[27] | Yang YB, Gao XY, Zhang ML, Yan S, Sun CJ, Xiao FZ, Huang NN, Yang XS, Zhao K, Zhou HK, Huang SY, Xie B, Zhang N . Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst, 2018,110(3):304-315. |
[28] | Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell, 2017, 66(1): 22-37.e29. |
[29] | Zeng Y, Du WW, Wu YY, Yang ZG, Awan FM, Li XM, Yang WN, Zhang C, Yang Q, Yee A, Chen Y, Yang FH, Sun H, Huang R, Yee AJ, Li RK, Wu ZK, Backx PH, Yang BB . A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics, 2017,7(16):3842-3855. |
[30] | Du WW, Fang L, Yang WN, Wu N, Awan FM, Yang ZG, Yang BB . Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ, 2017,24(2):357-370. |
[31] | Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C . Ten years of next-generation sequencing technology. Trends Genet, 2014,30(9):418-426. |
[32] | Wang J, Ren QL, Hua LS, Chen JF, Zhang JQ, Bai HJ, Li HL, Xu B, Shi ZH, Cao H, Xing BS, Bai XX . Comprehensive analysis of differentially expressed mRNA, lncRNA and circRNA and their ceRNA networks in the longissimus dorsi muscle of two different pig breeds. Int J Mol Sci, 2019,20(5):1107. |
[33] | Dahl M, Daugaard I, Andersen MS, Hansen TB, Grønbæk K, Kjems J, Kristensen LS . Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab Invest, 2018,98(12):1657-1669. |
[34] | Szabo L, Salzman J . Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet, 2016,17(11):679-692. |
[35] | Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L . Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res, 2016,26(9):1277-1287. |
[36] | Sekar S, Cuyugan L, Adkins J, Geiger P, Liang WS . Circular RNA expression and regulatory network prediction in posterior cingulate astrocytes in elderly subjects. BMC Genomics, 2018,19(1):340. |
[37] | Zhang QL, Ji XY, Li HW, Guo J, Wang F, Deng XY, Chen JY, Lin LB . Identification of circular RNAs and their altered expression under poly(I:C) challenge in key antiviral immune pathways in amphioxus. Fish Shellfish Immunol, 2019,86:1053-1057. |
[38] | Sekar S, Geiger P, Cuyugan L, Boyle A, Serrano G, Beach TG, Liang WS. Identification of circular RNAs using RNA sequencing. J Vis Exp, 2019, (153). |
[39] | Hansen TB, Venø MT, Damgaard CK, Kjems J . Comparison of circular RNA prediction tools. Nucleic Acids Res, 2016,44(6):e58. |
[40] | Chuang TJ, Chen YJ, Chen CY, Mai TL, Wang YD, Yeh CS, Yang MY, Hsiao YT, Chang TH, Kuo TC, Cho HH, Shen CN, Kuo HC, Lu MY, Chen YH, Hsieh SC, Chiang TW . Integrative transcriptome sequencing reveals extensive alternative trans-splicing and cis-backsplicing in human cells. Nucleic Acids Res, 2018,46(7):3671-3691. |
[41] | Wang LY, Long HY, Zheng QH, Bo XT, Xiao XH, Li B . Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol Cancer, 2019,18(1):119. |
[42] | Panda AC, De S, Grammatikakis I, Munk R, Yang X, Piao Y, Dudekula DB, Abdelmohsen K, Gorospe M . High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res, 2017,45(12):e116. |
[43] | Łabaj PP, Leparc GG, Linggi BE, Markillie LM, Wiley HS, Kreil DP . Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling. Bioinformatics, 2011,27(13):i383-i391. |
[44] | Li SS, Teng SS, Xu JQ, Su GN, Zhang Y, Zhao JQ, Zhang SW, Wang HY, Qin WY, Lu ZJ, Guo Y, Zhu QY, Wang D . Microarray is an efficient tool for circRNA profiling. Brief Bioinform, 2019,20(4):1420-1433. |
[45] | López-Jiménez E, Rojas AM, Andrés-León E . RNA sequencing and prediction tools for circular RNAs analysis. Adv Exp Med Biol, 2018,1087:17-33. |
[46] | Guan YJ, Ma JY, Song W . Identification of circRNA- miRNA-mRNA regulatory network in gastric cancer by analysis of microarray data. Cancer Cell Int, 2019,19:183. |
[47] | Xiong DD, Dang YW, Lin P, Wen DY, He RQ, Luo DZ, Feng ZB, Chen G . A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J Transl Med, 2018,16(1):220. |
[48] | Zhai ZS, Fu Q, Liu CJ, Zhang X, Jia PC, Xia P, Liu P, Liao SX, Qin T, Zhang HW . Emerging roles of hsa-circ- 0046600 targeting the miR-640/HIF-1α signalling pathway in the progression of HCC. Onco Targets Ther, 2019,12:9291-9302. |
[49] | Li H, Wei XF, Yang JM, Dong D, Hao D, Huang YZ, Lan XY, Plath M, Lei CZ, Ma Y, Lin FP, Bai YY, Chen H . CircFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a. Mol Ther Nucleic Acids, 2018,11:272-283. |
[50] | Chen B, Yu J, Guo LJ, Byers MS, Wang ZJ, Chen XL, Xu HP, Nie QH . Circular RNA circHIPK3 promotes the proliferation and differentiation of chicken myoblast cells by sponging miR-30a-3p. Cells, 2019,8(2):177. |
[51] | Shen XM, Zhang XY, Ru WX, Huang YZ, Lan XY, Lei CZ, Chen H. circINSR promotes proliferation and reduces apoptosis of embryonic myoblasts by sponging miR-34a. Mol Ther Nucleic Acids, 2020,19:986-999. |
[52] | Huang SL, Li XZ, Zheng H, Si XY, Li B, Wei GQ, Li CL, Chen YJ, Chen YM, Liao WJ, Liao YL, Bin JP . Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 2019,139(25):2857-2876. |
[53] | Du WW, Zhang C, Yang WN, Yong TQ, Awan FM, Yang BB . Identifying and characterizing circRNA-protein interaction. Theranostics, 2017,7(17):4183-4191. |
[54] | Barra J, Leucci E . Probing long non-coding RNA- protein interactions. Front Mol Biosci, 2017,4:45. |
[55] | Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL, Gorospe M . Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol, 2017,14(3):361-369. |
[56] | Du WW, Yang WN, Liu E, Yang ZG, Dhaliwal P, Yang BB . Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res, 2016,44(6):2846-2858. |
[57] | Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L, Chen LL. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell, 2017, 67(2): 214-227.e217. |
[58] | Dong W, Dai ZH, Liu FC, Guo XG, Ge CM, Ding J, Liu H, Yang F . The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production. EBioMedicine, 2019,45:155-167. |
[59] | Patop IL, Wüst S, Kadener S . Past, present, and future of circRNAs. EMBO J, 2019,38(16):e100836. |
[60] | Kong S, Tao M, Shen XJ, Ju SQ . Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Lett, 2020,483:59-65. |
[61] | Yang Y, Fan XJ, Mao MW, Song XW, Wu P, Zhang Y, Jin YF, Yang Y, Chen LL, Wang Y, Wong CC, Xiao XS, Wang ZF . Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res, 2017,27(5):626-641. |
[62] | Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez- Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S. Translation of circRNAs. Mol Cell, 2017,66(1): 9-21.e27. |
[63] | Stothard P . The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences Biotechniques , 2000,28(6):1102,1104. |
[64] | Zhao J, Wu J, Xu TY, Yang QC, He JH, Song XF . IRESfinder: Identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features. J Genet Genom, 2018,45(7):403-406. |
[65] | Wei LY, Chen HR, Su R . M6APred-EL: a sequence- based predictor for identifying N6-methyladenosine sites using ensemble learning. Mol Ther Nucleic Acids, 2018,12:635-644. |
[66] | Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS . Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 2009,324(5924):218-223. |
[67] | Zhang ML, Zhao K, Xu XP, Yang YB, Yan S, Wei P, Liu H, Xu JB, Xiao FZ, Zhou HK, Yang XS, Huang NN, Liu JL, He KJ, Xie KP, Zhang G, Huang SY, Zhang N . A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun, 2018,9(1):4475. |
[68] | Zhang ML, Huang NN, Yang XS, Luo JY, Yan S, Xiao FZ, Chen WP, Gao XY, Zhao K, Zhou HK, Li ZQ, Ming L, Xie B, Zhang N . A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene, 2018,37(13):1805-1814. |
[69] | Ling YH, Zheng Q, Zhu L, Xu LN, Sui MH, Zhang YH, Liu Y, Fang FG, Chu MX, Ma YH, Zhang XR . Trend analysis of the role of circular RNA in goat skeletal muscle development. BMC Genomics, 2020,21(1):220. |
[70] | Wei XF, Li H, Yang JM, Hao D, Dong D, Huang YZ, Lan XY, Plath M, Lei CZ, Lin FP, Bai YY, Chen H . Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis, 2017,8(10):e3153. |
[71] | Xie YQ, Chen T, Luo JY, Xi QY, Zhang YL, Sun JJ . Mechanism of circRNA and its effect on development of animal muscles. Chin Anim Husb Vet Med, 2018,45(8):2270-2275. |
谢月琴, 陈婷, 罗君谊, 习欠云, 张永亮, 孙加节 . circRNA作用机制及其对动物肌肉发育的影响. 中国畜牧兽医, 2018,45(8):2270-2275. | |
[72] | Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, Noh JH, Kim KM, Mattison JA, De Cabo R, Gorospe M . Circular RNAs in monkey muscle: age-dependent changes. Aging (Albany NY), 2015,7(11):903-910. |
[73] | Hong LJ, Gu T, He YJ, Zhou C, Hu Q, Wang XW, Zheng EQ, Huang SX, Xu Z, Yang J, Yang HQ, Li ZC, Liu DW, Cai GY, Wu ZF . Genome-wide analysis of circular RNAs mediated ceRNA regulation in porcine embryonic muscle development. Front Cell Dev Biol, 2019,7:289. |
[74] | Ouyang HJ, Chen XL, Wang ZJ, Yu J, Jia XZ, Li ZH, Luo W, Abdalla BA, Jebessa E, Nie QH, Zhang XQ . Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens. DNA Res, 2018,25(1):71-86. |
[75] | Li H, Yang JM, Wei XF, Song CC, Dong D, Huang YZ, Lan XY, Plath M, Lei CZ, Ma Y, Qi XL, Bai YY, Chen H . CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a. J Cell Physiol, 2018,233(6):4643-4651. |
[76] | Ouyang HJ, Chen XL, Li WM, Li ZH, Nie QH, Zhang XQ . Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken. Front Genet, 2018,9:172. |
[77] | Wang YH, Li ML, Wang YH, Jia L, Zhang M, Fang XT, Chen H, Zhang CL . A Zfp609 circular RNA regulates myoblast differentiation by sponging miR-194-5p. Int J Biol Macromol, 2019,121:1308-1313. |
[78] | Li XY, Li C, Y Liu ZJ, Ni W, Yao R, Xu YR, Quan RZ, Zhang MD, Li HX, Liu L, Hu SW,. Circular RNA circ-FoxO3 inhibits myoblast cells differentiation. Cells, 2019,8(6):616. |
[79] | Peng SJ, Song CC, Li H, Cao XK, Ma YL, Wang XG, Huang YZ, Lan XY, Lei CZ, Chaogetu B, Chen H . Circular RNA SNX29 sponges miR-744 to regulate proliferation and differentiation of myoblasts by activating the Wnt5a/Ca 2+ signaling pathway . Mol Ther Nucleic Acids, 2019,16:481-493. |
[80] | Shen XX, Liu ZH, Cao XN, He HR, Han SS, Chen YQ, Cui C, Zhao J, Li DY, Wang Y, Zhu Q, Yin HD . Circular RNA profiling identified an abundant circular RNA circTMTC1 that inhibits chicken skeletal muscle satellite cell differentiation by sponging miR-128-3p. Int J Biol Sci, 2019,15(10):2265-2281. |
[81] | Li L, Chen Y, Nie L, Ding X, Zhang X, Zhao W, Xu XL, Kyei B, Dai DH, Zhan SY, Guo JZ, Zhong T, Wang LJ, Zhang HP . MyoD-induced circular RNA CDR1as promotes myogenic differentiation of skeletal muscle satellite cells. Biochim Biophys Acta Gene Regul Mech, 2019,1862(8):807-821. |
[82] | Wang XG, Cao XK, Dong D, Shen XM, Cheng J, Jiang R, Yang ZX, Peng SJ, Huang YZ, Lan XY, Elnour IE, Lei CZ, Chen H . Circular RNA TTN acts as a miR-432 sponge to facilitate proliferation and differentiation of myoblasts via the IGF2/PI3K/AKT signaling pathway. Mol Ther Nucleic Acids, 2019,18:966-980. |
[83] | Yao R, Yao Y, Li CY, Li XY, Ni W, Quan RZ, Liu L, Li HX, Xu YR, Zhang MD, Ullah Y, Hu SW . Circ-HIPK3 plays an active role in regulating myoblast differentiation. Int J Biol Macromol, 2019,155:1432-1439. |
[84] | Yue BL, Wang J, Ru WX, Wu JY, Cao XK, Yang HY, Huang YZ, Lan XY, Lei CZ, Huang BZ, Chen H . The circular RNA circHUWE1 sponges the miR-29b-AKT3 axis to regulate myoblast development. Mol Ther Nucleic Acids, 2020,19:1086-1097. |
[85] | Pandey PR, Yang JH, Tsitsipatis D, Panda AC, Noh JH, Kim KM, Munk R, Nicholson T, Hanniford D, Argibay D, Yang XL, Martindale JL, Chang MW, Jones SW, Hernando E, Sen P, De S, Abdelmohsen K, Gorospe M,. circSamd4 represses myogenic transcriptional activity of PUR proteins. Nucleic Acids Res, 2020,48(7):3789-3805. |
[86] | Nie L . Mechanism of circ-CDR1as regulating goat skeletal muscle satellite cells differentiation[Dissertation]. Sichuan Agricultural University, 2018. |
聂露 . 环状RNA CDR1as调控山羊骨骼肌卫星细胞分化的机制研究[学位论文]. 四川农业大学, 2018. | |
[87] | Shen LY, Gan ML, Tang QZ, Tang GQ, Jiang YZ, Li MZ, Chen L, Bai L, Shuai SR, Wang JY, Li XW, Liao K, Zhang SH, Zhu L . Comprehensive analysis of lncRNAs and circRNAs reveals the metabolic specialization in oxidative and glycolytic skeletal muscles. Int J Mol Sci, 2019,20(12):2855. |
[88] | Li BJ, Yin D, Li PH, Zhang ZK, Zhang XY, Li HQ, Li RY, Hou LM, Liu HL, Wu WJ . Profiling and functional analysis of circular RNAs in porcine fast and slow muscles. Front Cell Dev Biol, 2020,8:322. |
[89] | Feng J, Chen K, Dong X, Xu XL, Jin YX, Zhang YX, Chen WB, Han YJ, Shao L, Gao Y, He CJ . Genome- wide identification of cancer-specific alternative splicing in circRNA. Mol Cancer, 2019,18(1):35. |
[90] | Kristensen LS, Hansen TB, Venø MT, Kjems J . Circular RNAs in cancer: opportunities and challenges in the field. Oncogene, 2018,37(5):555-565. |
[91] | Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu JZ, Marzluff WF, Sharpless NE . Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013,19(2):141-157. |
[92] | Suzuki H, Aoki Y, Kameyama T, Saito T, Masuda S, Tanihata J, Nagata T, Mayeda A, Takeda SI, Tsukahara T . Endogenous multiple exon skipping and back-splicing at the DMD mutation hotspot. Int J Mol Sci, 2016,17(10):1722. |
[93] | Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell, 2017, 66(1): 22-37.e9. |
[94] | Khan MaF, Reckman YJ, Aufiero S, Van Den Hoogenhof MMG, Van Der Made I, Beqqali A, Koolbergen DR, Rasmussen TB, Van Der Velden J, Creemers EE, Pinto YM . RBM20 regulates circular RNA production from the titin gene. Circ Res, 2016,119(9):996-1003. |
[95] | Shieh PB . Emerging strategies in the treatment of duchenne muscular dystrophy. Neurotherapeutics, 2018,15(4):840-848. |
[96] | Surono A, Takeshima Y, Wibawa T, Ikezawa M, Nonaka I, Matsuo M . Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing. Hum Mol Genet, 1999,8(3):493-500. |
[97] | Aoki Y, Yokota T, Nagata T, Nakamura A, Tanihata J, Saito T, Duguez SMR, Nagaraju K, Hoffman EP, Partridge T, Takeda SI . Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci USA, 2012,109(34):13763-13768. |
[98] | Cazzella V, Martone J, Pinnarò C, Santini T, Twayana SS, Sthandier O, D'amico A, Ricotti V, Bertini E, Muntoni F, Bozzoni I,. Exon 45 skipping through U1-snRNA antisense molecules recovers the Dys-nNOS pathway and muscle differentiation in human DMD myoblasts. Mol Ther, 2012,20(11):2134-2142. |
[99] | Song ZB, Liu YM, Fang XB, Xie MS, Ma ZY, Zhong ZG, Feng XL, Zhang WX . Comprehensive analysis of the expression profile of circRNAs and their predicted protein-coding ability in the muscle of mdx mice. Funct Integr Genomics, 2020,20(3):397-407. |
[100] | Weng J, Zhang PX, Yin XF, Jiang BG . The whole transcriptome involved in denervated muscle atrophy following peripheral nerve injury. Front Mol Neurosci, 2018,11:69. |
[101] | Fu YH, Pizzuti A, Fenwick RG, King J, Rajnarayan S, Dunne PW, Dubel J, Nasser GA, Ashizawa T, De Jong P . An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science, 1992,255(5049):1256-1258. |
[102] | Czubak K, Taylor K, Piasecka A, Sobczak K, Kozlowska K, Philips A, Sedehizadeh S, Brook JD, Wojciechowska M, Kozlowski P . Global increase in circular RNA levels in myotonic dystrophy. Front Genet, 2019,10:649. |
[103] | Voellenkle C, Perfetti A, Carrara M, Fuschi P, Renna LV, Longo M, Sain SB, Cardani R, Valaperta R, Silvestri G, Legnini I, Bozzoni I, Furling D, Gaetano C, Falcone G, Meola G, Martelli F . Dysregulation of circular RNAs in myotonic dystrophy type 1. Int J Mol Sci, 2019,20(8):1938. |
[104] | Guo MW, Qiu J, Shen F, Wang SN, Yu J, Zuo H, Yao J, Xu SN, Hu TH, Wang DM, Zhao Y, Hu YP, Shen FX, Ma XR, Lu J, Gu XJ, Xu LY . Comprehensive analysis of circular RNA profiles in skeletal muscles of aging mice and after aerobic exercise intervention. Aging (Albany NY), 2020,12(6):5071-5090. |
[1] | 张为露, 冷奇颖, 郑嘉辉, AliHassanNawaz, 焦振海, 王府建, 张丽. 小鼠生长激素受体基因环状转录本的克隆及其表达规律[J]. 遗传, 2021, 43(9): 890-900. |
[2] | 邢宝松, 王璟, 陈俊峰, 马强, 任巧玲, 张家庆, 张华, 滑留帅, 孙加节, 曹海. 去势和非去势公猪背最长肌circRNA差异表达分析[J]. 遗传, 2021, 43(11): 1066-1077. |
[3] | 张恩权, 蔡伟聪, 李桂玲, 李健, 刘静雯. 赫氏颗石藻(Emiliania huxleyi)响应病毒感染的microRNA转录组分析[J]. 遗传, 2021, 43(11): 1088-1100. |
[4] | 郑帅龙, 李利, 张红平. 环状RNA翻译能力研究进展[J]. 遗传, 2020, 42(5): 423-434. |
[5] | 屈亮, 李素, 仇华吉. 单细胞RNA测序技术在病毒研究中的应用[J]. 遗传, 2020, 42(3): 269-277. |
[6] | 张悦, 冯颖, 马芳. 早期停育胚胎的滋养层细胞相关基因与特征分析[J]. 遗传, 2020, 42(10): 1004-1016. |
[7] | 禹奇超,宋彬,邹轩轩,王岭,刘德权,李波,马昆. 乳腺癌癌旁组织特异性表达基因分析[J]. 遗传, 2019, 41(7): 625-633. |
[8] | 刘旭庆,高宇帮,赵良真,蔡宇晨,王汇源,苗苗,顾连峰,张航晓. 环状RNA的产生、研究方法及功能[J]. 遗传, 2019, 41(6): 469-485. |
[9] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[10] | 冷奇颖, 郑嘉辉, 徐海冬, PatriciaAdu-Asiamah, 张颖, 杜炳旺, 张丽. 鸡胰岛素降解酶基因环状转录本克隆及其表达规律[J]. 遗传, 2019, 41(12): 1129-1137. |
[11] | 李静秋, 杨杰, 周平, 乐燕萍, 龚朝辉. 竞争性内源RNA的生物学功能及其调控[J]. 遗传, 2015, 37(8): 756-764. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: