[1] Nagai H, Oshiro N, Takuwa-Kuroda K, Iwanaga S, Nozaki M, Nakajima T. Novel proteinaceous toxins from the nematocyst venom of the Okinawan sea anemone Phyl-lodiscus semoni Kwietniewski. Biochem Biophys Res Commun, 2002, 294(4): 760–763.
[2] Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol, 2005, 88(1): 91–142.
[3] Aroian R, van der Goot FG. Pore-forming toxins and cel-lular non-immune defenses (CNIDs). Curr Opin Microbiol, 2007, 10(1): 57–61.
[4] van der Goot G (Ed). Pore-forming toxins In: Current Topics in Microbiology and Immunology, 1st edition. Springer Verlag, Berlin Heidelberg, 2001.
[5] Balachandran P, Hollingshead SK, Paton JC, Briles DE. The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J Bacteriol, 2001, 183(10): 3108–3116.
[6] Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RHP, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA. The MACPF/CDC family of pore-forming toxins. Cell Microbiol, 2008, 10(9): 1765–1774.
[7] Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Frêche B. Bacterial pore-forming toxins: the (w)hole story? Cell Mol Life Sci, 2008, 65(3): 493–507.
[8] Soltani CE, Hotze EM, Johnson AE, Tweten RK. Specific protein-membrane contacts are required for prepore and pore assembly by a cholesterol-dependent cytolysin. J Biol Chem, 2007, 282(21): 15709–15716.
[9] Soltani CE, Hotze EM, Johnson AE, Tweten RK. Struc-tural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Natl Acad Sci USA, 2007, 104(51): 20226–20231.
[10] Rosado CJ, Buckle AM, Law RHP, Butcher RE, Kan WT, Bird CH, Ung K, Browne KA, Baran K, Bash-tannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, Ellisdon AM, Pearce MC, Bottomley SP, Emsley J, Smith AI, Rossjohn J, Hartland EL, Voskoboinik I, Tra-pani JA, Bird PI, Dunstone MA, Whisstock JC. A common fold mediates vertebrate defense and bacterial attack. Science, 2007, 317(5844): 1548–1551.
[11] Lukoyanova N, Saibil HR. Friend or foe: the same fold for attack and defense. Trends Immunol, 2008, 29(2): 51–53.
[12] Slade DJ, Lovelace LL, Chruszcz M. Crystal structure of the MACPF domain of human complement protein C8α in complex with the C8γ subunit. J Mol Biol, 2008, 379(2): 331–342.
[13] Watson NFS, Durrant LG, Madjd Z, Ellis IO, Scholefield JH, Spendlove I. Expression of the membrane complement regulatory protein CD59 (protectin) is associated with re-duced survival in colorectal cancer patients. Cancer Immunol Immunother, 2006, 55(8): 973–980.
[14] Harhausen D, Khojasteh U, Stahel PF, Morgan BP, Niet-feld W, Dirnagl U, Trendelenburg G. Membrane attack complex inhibitor CD59a protects against focal cerebral ischemia in mice. J Neuroinflamm , 2010, 7: 15.
[15] Uellner R, Zvelebil MJ, Hopkins J, Jones J, MacDougall LK, Morgan BP, Podack E, Waterfield MD, Griffiths GM. Perforin is activated by a proteolytic cleavage during bio-synthesis which reveals a phospholipid-binding C2 do-main. EMBO J, 1997, 16(24): 7287–7296.
[16] Voskoboinik I, Thia MC, Fletcher J, Ciccone A, Browne K, Smyth MJ, Trapani JA. Calcium-dependent plasma mem-brane binding and cell lysis by perforin are mediated through its C2 domain: A critical role for aspartate resi-dues 429, 435, 483, and 485 but not 491. J Biol Chem, 2005, 280(9): 8426–8434.
[17] Bolitho P, Voskoboinik I, Trapani JA, Smyth MJ. Apop-tosis induced by the lymphocyte effector molecule per-forin. Curr Opin Immunol, 2007, 19(3): 339–347.
[18] Pipkin ME, Lieberman J. Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol, 2007, 19(3): 301&nd |