[1] 朱祯, 曲乐庆, 张磊. 水稻转基因研究及新品种选育. 生物产业技术, 2010, 17(3): 28-34.[2] 朱祯. 转基因水稻研发进展. 中国农业科技导报, 2010, 12(2): 9-16.[3] Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY. Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot, 2007, 100(5): 959-966.[4] Knowles BH, Dow JAT. The crystal δ-endotoxins of Bacillus thuringiensis: models for their mechanism of action on the insect gut. Bioessays, 1993, 15(7): 469-476.[5] Schuler TH, Poppy GM, Kerry BR, Denholm I. Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. Trends Biotechnol, 1999, 17(5): 210-216.[6] 朱玉, 吴茜, 高越峰, 徐鸿林, 刘春明, 周兆斓, 朱祯, 李向辉. 雪花莲外源凝集素基因的克隆、序列分析和植物表达载体的构建. 农业生物技术学报, 1997, 5(4): 331-338.[7] 冯英, 薛庆中. 作物抗虫基因工程及其安全性. 遗传, 2001, 23(6): 571-576.[8] Purcell JP, Greenplate JT, Jennings MG, Ryerse JS, Pershing JC, Sims SR, Prinsen MJ, Corbin DR, Tran M, Sammons RD, et al. Cholesterol oxidase: a potent insecticidal protein active against boll weevil larvae. Biochem Biophys Res Commun, 1993, 196(3): 1406-1413.[9] 王继磊, 刘迪秋, 丁元明, 葛锋, 李文娴, 田荣欢. Bt转基因抗虫植物研究进展. 生物学杂志, 2010, 27(4): 75-78.[10] 曾千春, 吴茜, 周开达, 冯德江, 王锋, 苏军, Altosaar, 朱祯. 修饰的cry1Ac基因导入籼稻明恢81获得抗虫纯合系. 遗传学报, 2002, 29(6): 519-524.[11] 徐鸿林, 翟红利, 王锋, 朴建华, 杨晓光, 朱祯. 豇豆胰蛋白酶抑制剂基因(cpti)及其在抗虫转基因作物中的应用. 中国农业科技导报, 2008, 10(1): 18-27.[12] McGaughey WH. Insect resistance to the biological insecticide. Bacillus thuringiensis. Science, 1985, 229(4709): 193-195.[13] 贾士荣. 生物技术与食品安全性. 生物技术通报, 1997, (1): 4-9.[14] Wan XS, Hamilton TC, Ware JH, Donahue JJ, Kennedy AR. Growth inhibition and cytotoxicity induced by Bowman-Birk inhibitor concentrate in cisplatin-resistant human ovarian cancer cells. Nutr Cancer, 1998, 31(1): 8-17.[15] Gatehouse AMR, Gatehouse JA, Dobie P, Kilminster AM, Boulter D. Biochemical basis of insect resistance in Vigna unguiculata. J Sci Food Agric, 1979, 30(10): 948-958.[16] Deng CY, Song GS, Xu JW, Zhu Z. Increasing accumulation level of foreign protein in transgenic plant through protein targeting. Acta Botanica Sinica, 2003, 45(9): 1084-1089.[17] Andow DA, Zwahlen C. Assessing environmental risks of transgenic plants. Ecol Lett, 2006, 9(2): 196-214.[18] Cheng X, Sardana R, Kaplan H, Altosaar I. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA, 1998, 95(6): 2767-2772.[19] 刘志, 袁小玲, 张天真. 获得多价转基因作物的策略. 遗传, 2001, 23(2): 182-186.[20] Li XG, Zeng QC, Chen SB, Xu JW, Chang TJ, Zhu Z. Influence of matrix attachment regions from maize on transgene expression level in tobacco. Acta Botanica Sinica, 2002, 44(7): 804-808.[21] Goldsbrough AP, Lastrella CN, Yoder JI. Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Nat Biotechnol 1993, 11: 1286-1292.[22] Austin S, Ziese M, Sternberg N. A novel role for site-specific recombination in maintenance of bacterial replicons. Cell, 1981, 25(3): 729-736.[23] Tu J, Datta K, Oliva N, Zhang G, Xu C, Khush GS, Zhang Q, Datta SK. Site-independently integrated transgenes in the elite restorer rice line Minghui 63 allow removal of a selectable marker from the gene of interest by self-segregation. Plant Biotechnol J, 2003, 1(3): 155-165.[24] Chen S, Li X, Liu X, Xu H, Meng K, Xiao G, Wei X, Wang F, Zhu Z. Green fluorescent protein as a vital elimination marker to easily screen marker-free transgenic progeny derived from plants co-transformed with a double T-DNA binary vector system. Plant Cell Rep, 2005, 23(9): 625-631.[25] Zhou HY, Chen SB, Li XG, Xiao GF, Wei XL, Zhu Z. Generating marker-free transgenic tobacco plants by agrobacterium-mediated transformation with double T-DNA binary vec |