遗传 ›› 2014, Vol. 36 ›› Issue (8): 747-755.doi: 10.3724/SP.J.1005.2014.0747
陈志林1, 冯美莹1, 陈预明1, 卫恒习1, 李莉1, 吴同山2, 张守全1
收稿日期:
2014-03-22
出版日期:
2014-08-20
发布日期:
2013-07-19
通讯作者:
张守全,教授,博士生导师,研究方向:动物遗传与繁育。E-mail:sqzhang@scau.edu.cn
作者简介:
陈志林,在读硕士研究生,专业方向:动物遗传与繁育。Tel:020-85285897;E-mail:qq505878698@sina.com
基金资助:
Zhilin Chen1, Meiying Feng1, Yuming Chen1, Hengxi Wei1, Li Li1, Tongshan Wu2, Shouquan Zhang1
Received:
2014-03-22
Online:
2014-08-20
Published:
2013-07-19
摘要: 哺乳动物的受精过程涉及到精子一系列的功能活动,如精子在雌性生殖道的运行、精子的超活化与获能、顶体反应以及精卵融合等。在精子经历的这一系列过程中,精子功能相关的蛋白质发挥着不可或缺的作用,这些蛋白分子的正常与否与雄性个体的繁殖力高低密切相关,因此精子功能相关的蛋白质能够作为评定哺乳动物精液受精能力的生物标记。文章主要对哺乳动物精子功能相关的蛋白质进行了综述,以阐述相关蛋白分子对精子运动活力、精子获能、顶体反应、透明带穿入和精卵融合等方面的重要作用以及这些蛋白分子在家畜遗传改良上的潜在应用。
陈志林, 冯美莹, 陈预明, 卫恒习, 李莉, 吴同山, 张守全. 精子功能相关的蛋白质调控受精过程的研究进展[J]. 遗传, 2014, 36(8): 747-755.
Zhilin Chen, Meiying Feng, Yuming Chen, Hengxi Wei, Li Li, Tongshan Wu, Shouquan Zhang. The progress of sperm functional proteins regulating the process of fertilization[J]. HEREDITAS(Beijing), 2014, 36(8): 747-755.
[1] A, Karsani SA, Nathan S. Mammalian sperm fertility related proteins . Int J Med Sci , 2013, 10(12): 1649-1657. [2] J, Jemel I, Tanemoto A, Taketomi Y, Payre C, Coatrieux C, Sato H, Yamamoto K, Masuda S, Pernet- Gallay K, Pierre V, Hara S, Murakami M, De Waard M, Lambeau G, Arnoult C. Group X phospholipase A2 is rel-eased during sperm acrosome reaction and controls fertility outcome in mice . J Clin Invest , 2010, 120(5): 1415-1428. [3] SK, Bhandari B. Acrosome reaction: relevance of zona pellucida glycoproteins . Asian J Androl , 2011, 13(1): 97-105. [4] P, Myles DG. Cell-cell membrane fusion during mammalian fertilization . FEBS Lett , 2007, 581(11): 2174- 2180. [5] GG, Woolley DM. Basal sliding and the mechanics of oscillation in a mammalian sperm flagellum . Biophys J , 2004, 87(6): 3934-3944. [6] J, Diaz ES, Morales P. Kinases, phosphatases and proteases during sperm capacitation . Cell Tissue Res , 2012, 349(3): 765-782. [7] PE. Understanding the molecular basis of sperm capacitation through kinase design . Proc Natl Acad Sci USA , 2009, 106(3): 667-668. [8] IA, Espinosa F, Edwards J, Sosnik J, De La Vega- Beltrán JL, Hockensmith JW, Kopf GS, Darszon A, Visconti PE. Involvement of a Na + /HCO -3 cotransporter in mouse sperm capacitation . J Biol Chem , 2003, 278(9): 7001-7009. [9] D, Finkelstein M, Breitbart H. Mechanism of sperm capacitation and the acrosome reaction: role of pro-tein kinases . Asian J Androl , 2012, 14(6): 816-821. [10] PV, Botchkina IL, Fedorenko A, Kirichok Y. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel . Cell , 2010, 140(3): 327-337. [11] B, Suarez SS. Bovine sperm hyperactivation is promoted by alkaline-stimulated Ca 2+ influx . Biol Reprod , 2007, 76(4): 660-665. [12] CM, Santos T, Hernández-Cruz A, Darszon A. Properties of a novel pH-dependent Ca 2+ permeation path-way present in male germ cells with possible roles in sper-matogenesis and mature sperm function . J Gen Physiol , 1998, 112(1): 33-53. [13] Y, Navarro B, Clapham DE. Whole-cell patch- clamp measurements of spermatozoa reveal an alkaline- activated Ca 2+ channel . Nature , 2006, 439(7077): 737-740. [14] B, Kirichok Y, Clapham DE. KSper, a pH-sen-sitive K+ current that controls sperm membrane potential . Proc Natl Acad Sci USA , 2007, 104(18): 7688-7692. [15] V, Jouannet P, Pignot-Paintrand I, Feneux D. Effects of pH on the reactivation of human spermatozoa demembranated with Triton X-100 . Mol Reprod Dev , 1991, 29(2): 157-162. [16] HC, Granish KA, Suarez SS. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca 2+ and not cAMP . Dev Biol , 2002, 250(1): 208-217. [17] M, Megnagi B, Ickowicz D, Breitbart H. Regulation of sperm motility by PIP2(4, 5) and actin polymerization . Dev Biol , 2013, 381(1): 62-72. [18] D, Wegner A. Gelsolin as a calcium-regulated actin filament-capping protein . Eur J Biochem , 2000, 267(14): 4339-4345. [19] PA, Iida K, Yin HL, Stossel TP. Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin . J Biol Chem , 1987, 262(25): 12228-12236. [20] FM, Wijnand E, van de Lest CHA, Colenbrander B, van Golde LMG, Gadella BM. Capacitation dependent activation of tyrosine phosphorylation generates two sperm head plasma membrane proteins with high primary binding affinity for the zona pellucida . Mol Reprod Dev , 2001, 60(1): 107-115. [21] PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway . Deve l opment , 1995, 121(4): 1139-1150. [22] JS, Gardner TK, Kanous KS, Lindemann CB. The interaction of pH and cyclic adenosine 3', 5'-monopho-sphate on activation of motility in Triton X-100 extracted bull sperm . Biol Reprod , 1988, 39(5): 1129-1136. [23] SS. Control of hyperactivation in sperm . Hum Reprod Update , 2008, 14(6): 647-657. [24] F, Ying X, Guo W, Guo Q, Chen G, Liu Y, Ding Z. The role of Zn-α2 glycoprotein in sperm motility is mediated by changes in cyclic AMP . Reproduction , 2007, 134(4): 569-576. [25] S, Saha S, Majumder GC, Dungdung SR. Purification and characterization of a sperm motility inhibiting factor from caprine epididymal plasma . PLoS O NE , 2010, 5(8): e12039. [26] T, Hiroaki H, Furuichi Y, Wada K, Satoh M, Satoh M, Osada T, Gagnon C. Cloning of boar SPMI gene which is expressed specifically in seminal vesicle and codes for a sperm motility inhibitor protein . FEBS Lett , 1995, 368(3): 420-424. [27] J, Jin N, Zheng H, Ro S, Tafolla D, Sanders KM, Yan W. Catsper3 and Catsper4 are essential for sperm hyperactivated motility and male fertility in the mouse . Biol Reprod , 2007, 77(1): 37-44. [28] AA, Strehler EE, Martin-Deleon PA. Expression and secretion of plasma membrane Ca 2+ -ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm . PLoS O NE , 2013, 8(11): e80181. [29] PH, Suarez SS. Alterations to the bull sperm surface proteins that bind sperm to oviductal epithelium . Biol Reprod , 2012, 87(4): 88. [30] N, Jerome A, Srivastava SK, Ghosh SK, Kumar A. Bovine seminal PDC-109 protein: An overview of bioch-emical and functional properties . Anim Reprod Sci , 2013, 138(1-2): 1-13. [31] TM, Ignotz GG, Suarez SS. PDC-109 (BSP- A1/A2) promotes bull sperm binding to oviductal epithelium in vitro and may be involved in forming the oviductal sperm reservoir . Biol Reprod , 2003, 69(3): 809-815. [32] H, Cheng M, Ou Y, Thundathil JC, Oko R, van der Hoorn FA. Gene trap mutation of murine outer dense fiber protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism . BMC Dev Biol , 2010, 10(1): 67. [33] MG, Widgren EE, Hamil KG, Silva EJ, Richardson RT. Functional studies of eppin . Biochem Soc Trans , 2011, 39(5): 1447-1449. [34] SK, Yoon J, Wang L, Shibata TK, Motamedchaboki K, Shim KJ, Chang MS, Lee SH, Tamura N, Hatakeyama S, Nadano D, Sugihara K, Fukuda MN. Enhancement of mouse sperm motility by trophinin-binding peptide . Reprod Biol Endocrinol , 2012, 10(1): 101. [35] C, Wang L, Su B, Lu N, Song JJ, Yang XQ, Fu WW, Tan WW, Han B. Serine protease inhibitor Kazal type 1 promotes epithelial-mesenchymal transition through EGFR signaling pathway in prostate cancer . Prostate , 2014, 74(7): 689-701. [36] MH, Lee RK, Hwu YM, Lu CH, Chu SL, Chen YJ, Chang WC, Li SH. SPINKL, a Kazal-type serine protease inhibitor-like protein purified from mouse seminal vesicle fluid, is able to inhibit sperm capacitation . Reproduction , 2008, 136(5): 559-571. [37] C, Leclerc P, Baba T, Reyes-Moreno C, Bailey JL. The proacrosin binding protein, sp32, is tyrosine phospho-rylated during capacitation of pig sperm . J Androl , 2005, 26(4): 519-528. [38] C, Colas C, Perez-Pe R, Cebrian-Perez JA, Muino-Bla-nco T. A novel epidermal growth factor-dependent extracellular signal-regulated MAP kinase cascade involved in sperm functionality in sheep . Biol Reprod , 2012, 87(4): 93. [39] S, Smith TA, Paradis F, Burwash L, Dyck MK, Foxcroft GR, Dixon WT. Biomarkers of in vivo fertility in sperm and seminal plasma of fertile stallions . Theriogenology , 2010, 74(6): 956-967. [40] L, Di Francesco S, Neglia G, De Blasi M, Longobardi V, Campanile G, Gasparrini B. Osteopontin improves sperm capacitation and in vitro fertilization efficiency in buffalo (Bubalus bubalis) . Theriogenology , 2013, 80(3): 212-217. [41] C, Shur BD. Sperm from β1, 4-galactosyltran-sferase I-null mice exhibit precocious capacitation . Deve - lopment , 2004, 131(3): 491-501. [42] Y, Glick Y, Orr-Urtreger A, Ickowicz D, Gerber D, Breitbart H. Sperm epidermal growth factor receptor (EGFR) mediates α7 acetylcholine receptor (AChR) activation to promote fertilization . J Biol Chem , 2012, 287(26): 22328- 22340. [43] J, Elzeinova F, Novak P. Increased expression of secretory actin-binding protein on human spermatozoa is associated with poor semen quality . Hum Reprod , 2007, 22(5): 1396-1404. [44] P, Ghosh S, Jana K, Sen PC. Elucidation of the involvement of p14, a sperm protein during maturation, capacitation and acrosome reaction of caprine spermatozoa . PLoS O NE , 2012, 7(1): e30552. [45] AT, Lord T, Stanger SJ, Roman SD, Mccluskey A, Robinson PJ, Aitken RJ, Nixon B. Dynamin regulates spec-ific membrane fusion events necessary for acrosomal exo-cytosis in mouse spermatozoa . J Biol Chem , 2012, 287(45): 37659-37672. [46] J, Toma A, Wojtas A, Rusin A, Vydra N, Widlak W. Identification of a new mouse sperm acrosome-associa-ted protein . Reproduction , 2012, 143(6): 749-757. [47] EB, Westmuckett AD, Moore KL. SPACA7 is a novel male germ cell-specific protein localized to the sperm acrosome that is involved in fertilization in mice . Biol Reprod , 2014, 90(1): 16. [48] BD. Reassessing the role of protein-carbohydrate complementarity during sperm-egg interactions in the mouse . Int J Dev Biol , 2008, 52(5/6): 703-715. [49] SJ, Lefièvre L, Hughes DC, Barratt CLR. Cracking the egg: increased complexity in the zona pellucida . Hum Reprod , 2005, 20(5): 1148-1152. [50] P M. Zona pellucida glycoproteins . Annu Rev Biochem , 2008, 283: 24285-24289. [51] M, Rodriguez H, Zara L, Yu Y, Xu W, Oko R. MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization . Cell Tissue Res , 2012, 349(3): 881-895. [52] A, Poliandri A, Cabrera-Sharp V, Dacheux JL, Poutanen M, Huhtaniemi I. Epididymal protein Rnase10 is required for post-testicular sperm maturation and male ferti lity . FASEB J , 2012, 26(10): 4198-4209. [53] C, Kuang Y, Liu J, Feng J, Chen X, Wu W, Chi J, Tang L, Wang Y, Fei J, Wang Z. Prss37 is required for male ferti lity in the mouse . Biol Reprod , 2013, 88(5): 123. [54] R, Fujihara Y, Ikawa M, Okabe M. Mice expressing aberrant sperm-specific protein PMIS2 produce normal-looking but fertilization-incompetent spermatozoa . Mol Biol Cell , 2012, 23(14): 2671-2679. [55] Gestel RA, Brewis IA, Ashton PR, Brouwers JF, Gadella BM. Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte . Mol Hum Reprod , 2007, 13(7): 445-454. [56] GZ, Myles DG, Primakoff P. Testase 1 (ADAM 24) a plasma membrane-anchored sperm protease implicated in sperm function during epididymal maturation or fertilization . J Cell Sci , 2001, 114(Pt 9): 1787-1794. [57] KA, Nixon B, Baker MA, Hetherington L, Baker G, Liu DY, Aitken RJ. The molecular chaperone HSPA2 plays a key role in regulating the expression of sperm sur-face receptors that mediate sperm-egg recognition . PLoS O NE , 2012, 7(11): e50851. [58] M, Nomikos M, Parthimos D, Gonzalez-Gar-cia JR, Elgmati K, Calver BL, Sideratou Z, Nounesis G, Swann K, Lai FA. Chimeras of sperm PLCζ reveal disparate protein domain functions in the generation of intracellular Ca 2+ oscillations in mammalian eggs at fertilization . Mol Hum R e prod , 2013, 19(12): 852-864. [59] CR, Hay N, El-Alfy M, Zhao Q. Distribution of mouse sulfated glycoprotein-1 (prosaposin) in the testis and other tissues . J Androl , 1998, 19(2): 156-164. [60] T, Oh J, Woo JM, Choi E, Im SH, Yoo YJ, Kim DH, Nishimura H, Cho C. Expression and relationship of male reproductive ADAMs in mouse . Biol Reprod , 2006, 74(4): 744-750. [61] H, Kim E, Nakanishi T, Baba T. Possible function of the ADAM1a/ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface . J Biol Chem , 2004, 279(33): 34957-34962. [62] E, Doe B, Goulding D, Wright GJ. Juno is the egg Izumo receptor and is essential for mammalian fertilization . Nature , 2014, 508(7497): 483-487. [63] N, Ikawa M, Okabe M. The mechanism of sperm- egg interaction and the involvement of IZUMO1 in fusion . Asian J Androl , 2011, 13(1): 81-87. [64] Y, Inoue N, Ikawa M, Okabe M. Visualization of the moment of mouse sperm-egg fusion and dynamic localiza-tion of IZUMO1 . J Cell Sci , 2012, 125(Pt 21): 4985-4990. [65] DJ, Maldera JA, Weigel MM, Ernesto JI, Vasen G, Cuasnicu PS. Cysteine-rich secretory proteins (CRISP) and their role in mammalian fertilization . Biol Res , 2011, 44(2): 135-138. [66] DJ, Maldera JA, Vasen G, Ernesto JI, Munoz MW, Battistone MA, Cuasnicu PS. Epididymal protein CRISP1 plays different roles during the fertilization process . J Androl , 2011, 32(6): 672-678. [67] P. Sperm-egg adhesion and fusion in mammals . Expert Rev Mol Med , 2009, 11: e11. [68] K, Kudo A. The mechanism of sperm-oocyte fusion in mammals . Reproduction , 2004, 127(4): 423-429. [69] DA, Ha C, Primakoff P, Myles DG, Dveksler GS. Direct binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm-egg fusion . Mol Biol Cell , 2003, 14(12): 5098-5103. [70] A, Johannisson A, Rodriguez-Martinez H. Ass essment of sperm quality through fluorometry and spe-rm chromatin structure assay in relation to field fertility of frozen-thawed semen from Swedish AI bulls . Theriogeno - logy , 2001, 55(4): 947-961. [71] JK, Mocé E. Fertility evaluation of frozen/thawed semen . Theriogenology , 2005, 64(3): 492-504. [72] A, Dogan S, Rodriguez-Osorio N, Grant K, Kaya A, Memili E. Delivering value from sperm proteomics for fertility . Cell Tissue Res , 2012, 349(3): 783-793. |
[1] | 吕丹丹,张媛雅,葛海涛,黄夏禾,汪迎春. 大规模膜蛋白质组鉴定技术进展[J]. 遗传, 2019, 41(9): 863-874. |
[2] | 赵鑫,杨化强. 大动物精原干细胞研究进展[J]. 遗传, 2019, 41(8): 686-702. |
[3] | 肖娟, 王讯, 罗毅, 李晓开, 李学伟. 附睾小体功能蛋白及sRNA研究进展[J]. 遗传, 2018, 40(3): 197-206. |
[4] | 袁志恒,赵艳梅. piRNA/PIWI功能调控与精子发生[J]. 遗传, 2017, 39(8): 683-691. |
[5] | 胡立桥,周兆才,田伟. Hippo信号通路结构生物学研究进展[J]. 遗传, 2017, 39(7): 659-674. |
[6] | 董莲花, 冉茂良, 李智, 彭馥芝, 陈斌. 泛素-蛋白酶体途径在精子生成中的作用[J]. 遗传, 2016, 38(9): 791-800. |
[7] | 谢德健, 师明磊, 张彦, 王天艺, 沈文龙, 叶丙雨, 李平, 何超, 张香媛, 赵志虎. 利用CRISPR/Cas9技术构建CTCF蛋白降解细胞系[J]. 遗传, 2016, 38(7): 651-657. |
[8] | 符梅, 徐克惠, 许文明. Dicer调节生殖功能的研究进展[J]. 遗传, 2016, 38(7): 612-622. |
[9] | 谢龙祥, 于召箫, 郭思瑶, 李萍, AbualgasimElgailiAbdalla, 谢建平. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用[J]. 遗传, 2015, 37(8): 793-800. |
[10] | 徐苹,杨晶,陆丽兰,冯尔玲,王恒樑,卢瑛,朱力. 密度感应系统对弗氏志贺菌生长竞争能力的影响[J]. 遗传, 2015, 37(5): 487-493. |
[11] | 蒲强,罗嘉,沈林園,李学伟,张顺华,朱砺. 蛋白质修饰组学在肉品质研究中的应用[J]. 遗传, 2015, 37(4): 327-335. |
[12] | 刘舒媛,张昌军,彭海英,黄小琴,孙浩,林克勤,黄铠,褚嘉祐,杨昭庆. 精子端粒长度与特发性男性不育相关[J]. 遗传, 2015, 37(11): 1137-1142. |
[13] | 索金伟, 戴绍军. 蛋白质可逆磷酸化对花粉管生长的调控作用[J]. 遗传, 2014, 36(8): 766-778. |
[14] | 冉茂良, 陈斌, 尹杰, 杨岸奇, 蒋明. 睾丸发育和精子生成相关miRNA研究进展[J]. 遗传, 2014, 36(7): 646-654. |
[15] | 张媛媛, 杜强, 刘晓亮, 崔婉婷, 何蓉, 赵彦艳. QF-PCR筛查男性不育患者Y染色体无精子症因子微缺失[J]. 遗传, 2014, 36(6): 552-557. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: