遗传 ›› 2015, Vol. 37 ›› Issue (7): 655-663.doi: 10.16288/j.yczz.15-061
谢兵兵1, 2, 杨亚东1, 丁楠1, 2, 方向东1
收稿日期:
2015-02-02
修回日期:
2015-03-31
出版日期:
2015-07-20
发布日期:
2015-07-20
通讯作者:
方向东,博士,研究员,研究方向:干细胞与重要疾病的组学与转化医学。E-mail: fangxd@big.ac.cn
作者简介:
谢兵兵,在读硕士研究生,专业方向:基因组学数据挖掘。Tel: 010-84097538;E-mail: xiebb@big.ac.cn
基金资助:
Bingbing Xie1, 2, Yadong Yang1, Nan Ding1, 2, Xiangdong Fang1
Received:
2015-02-02
Revised:
2015-03-31
Online:
2015-07-20
Published:
2015-07-20
摘要: 随着高通量测序技术的不断发展与完善,对于不同层次和类型的生物组学数据的获取及分析方法也日趋成熟与完善。基于单组学数据的疾病研究已经发现了诸多新的疾病相关因子,而整合多组学数据研究疾病靶点的工作方兴未艾。生命体是一个复杂的调控系统,疾病的发生与发展涉及基因变异、表观遗传改变、基因表达异常以及信号通路紊乱等诸多层次的复杂调控机制,利用单一组学数据分析致病因子的局限性愈发显著。通过对多种层次和来源的高通量组学数据的整合分析,系统地研究临床发病机理、确定最佳疾病靶点已经成为精准医学研究的重要发展方向,将为疾病研究提供新的思路,并对疾病的早期诊断、个体化治疗和指导用药等提供新的理论依据。本文详细介绍了基因组、转录组和表观组等系统组学研究在疾病靶点筛选方面出现的新技术手段和研究进展,并对它们之间的整合分析新策略和优势进行了讨论。
谢兵兵, 杨亚东, 丁楠, 方向东. 整合分析多组学数据筛选疾病靶点的精准医学策略[J]. 遗传, 2015, 37(7): 655-663.
Bingbing Xie, Yadong Yang, Nan Ding, Xiangdong Fang. Identification of disease targets for precision medicine by integrative analysis of multi-omics data[J]. HEREDITAS(Beijing), 2015, 37(7): 655-663.
[1] Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell , 2013, 155(1): 27-38. [2] Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, Viale A, Wright C, Schweitzer PA, Gao Y, Kim D, Boland J, Hicks B, Kim R, Chhangawala S, Jafari N, Raghavachari N, Gandara J, Garcia-Reyero N, Hendrickson C, Roberson D, Rosenfeld JA, Smith T, Underwood JG, Wang M, Zumbo P, Baldwin DA, Grills GS, Mason CE. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat Biotechnol , 2014, 32(9): 915-925. [3] Rivera CM, Ren B. Mapping human epigenomes. Cell , 2013, 155(1): 39-55. [4] The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature , 2010, 467(7311): 52-58. [5] 丁楠, 渠鸿竹, 方向东. ENCODE计划和功能基因组研究. 遗传, 2014, 36(3): 237-247. [6] Qu HZ, Fang XD. A brief review on the Human Encyclopedia of DNA Elements (ENCODE) project. Genomics Proteomics Bioinformatics , 2013, 11(3): 135-141. [7] The 10000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature , 2012, 491(7422): 56-65. [8] Zhu XF, He FH, Zeng HM, Ling SP, Chen AL, Wang YQ, Yan XM, Wei W, Pang YK, Cheng H, Hua CL, Zhang Y, Yang XJ, Lu X, Cao LH, Hao LT, Dong LL, Zou W, Wu J, Li X, Zheng S, Yan J, Zhou J, Zhang LX, Mi SL, Wang XJ, Zhang L, Zou Y, Chen YM, Geng Z, Wang JM, Zhou JF, Liu X, Wang JX, Yuan WP, Huang G, Cheng T, Wang QF. Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet , 2014, 46(3): 287-293. [9] Zhang WJ, Gao YJ, Li PX, Shi ZB, Guo T, Li F, Han XK, Feng Y, Zheng C, Wang ZY, Li FM, Chen HQ, Zhou ZC, Zhang L, Ji HB. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res , 2014, 24(3): 331-343. [10] Muers M. RNA: Genome-wide views of long non-coding RNAs. Nat Rev Genet , 2011, 12(11): 742. [11] 李语丽, 于军, 宋述慧. RNA中6-甲基腺嘌呤的研究进展. 遗传,2013, 35(12): 1340-1351. [12] Zhang XO, Wang HB, Zhang Y, Lu XH, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell , 2014, 159(1): 134-147. [13] Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell , 2011, 44(4): 667-678. [14] Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3 ' UTRs and near stop codons. Cell , 2012, 149(7): 1635-1646. [15] Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucl Acids Res , 2014, 42(D1): D1001-D1006. [16] Bainbridge MN, Wiszniewski W, Murdock DR, Friedman J, Gonzaga-Jauregui C, Newsham I, Reid JG, Fink JK, Morgan MB, Gingras MC, Muzny DM, Hoang LD, Yousaf S, Lupski JR, Gibbs RA. Whole-genome sequencing for optimized patient management. Sci Transl Med , 2011, 3(87): 87re3. [17] Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet , 2011, 12(11): 745-755. [18] Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, Lawrence MS, Rodriguez FJ, Bernardo LA, Schubert L, Sunkavalli A, Shillingford N, Calicchio ML, Lidov HG, Taha H, Martinez-Lage M, Santi M, Storm PB, Lee JY, Palmer JN, Adappa ND, Scott RM, Dunn IF, Laws ER Jr, Stewart C, Ligon KL, Hoang MP, Van Hummelen P, Hahn WC, Louis DN, Resnick AC, Kieran MW, Getz G, Santagata S. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet , 2014, 46(2): 161-165. [19] Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature , 2012, 489(7417): 519-525. [20] Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat J-P, Nickerson E, Auclair D, Li LR, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M. A landscape of driver mutations in melanoma. Cell , 2012, 150(2): 251-263. [21] Rienzo M, Costa V, Scarpato M, Schiano C, Casamassimi A, Grimaldi V, Ciccodicola A, Napoli C. RNA-Seq for the identification of novel Mediator transcripts in endothelial progenitor cells. Gene , 2014, 547(1): 98-105. [22] Kadara H, Fujimoto J, Yoo SY, Maki Y, Gower AC, Kabbout M, Garcia MM, Chow CW, Chu Z, Mendoza G, Shen L, Kalhor N, Hong WK, Moran C, Wang J, Spira A, Coombes KR, Wistuba II. Transcriptomic architecture of the adjacent airway field cancerization in non-small cell lung cancer. J Natl Cancer Inst , 2014, 106(3): dju004. [23] Nord KH, Lilljebjörn H, Vezzi F, Nilsson J, Magnusson L, Tayebwa J, de Jong D, Bovée JVMG, Hogendoorn PCW, Szuhai K. GRM1 is upregulated through gene fusion and promoter swapping in chondromyxoid fibroma. Nat Genet , 2014, 46(5): 474-477. [24] Paritosh K, Gupta V, Yadava SK, Singh P, Pradhan AK, Pental D. RNA-seq based SNPs for mapping in Brassica juncea (AABB): synteny analysis between the two constituent genomes A (from B. rapa ) and B (from B. nigra ) shows highly divergent gene block arrangement and unique block fragmentation patterns. BMC Genomics , 2014, 15: 396. [25] [25] Alarcón MA, Medina MA, Hu Q, Avila ME, Bustos BI, Pérez-Palma E, Peralta A, Salazar P, Ugarte GD, Reyes AE, Martin GM, Opazo C, Moon RT, De Ferrari GV. A novel functional low-density lipoprotein receptor-related protein 6 gene alternative splice variant is associated with Alzheimer's disease. Neurobiol Aging , 2013, 34(6): 1709. e9-1709. e18. [26] Malik R, Patel L, Prensner JR, Shi Y, Iyer MK, Subramaniyan S, Carley A, Niknafs YS, Sahu A, Han SM, Ma T, Liu ML, Asangani IA, Jing XJ, Cao XH, Dhanasekaran SM, Robinson DR, Feng FY, Chinnaiyan AM. The lncRNA PCAT 29 inhibits oncogenic phenotypes in prostate cancer. Mol Cancer Res , 2014, 12(8): 1081-1087. [27] Kataoka M, Wang DZ. Non-coding RNAs including miRNAs and lncRNAs in cardiovascular biology and disease. Cells , 2014, 3(3): 883-898. [28] White NM, Cabanski CR, Silva-Fisher JM, Dang HX, Govindan R, Maher CA. Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biol , 2014, 15(8): 429. [29] Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet , 2015, 47(3): 199-208. [30] Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu JZ, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA , 2013, 19(2): 141-157. [31] Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet , 2010, 6(12): e1001233. [32] Lukiw WJ. Circular RNA (circRNA) in Alzheimer's disease (AD). Front Genet , 2013, 4: 307. [33] Schübeler D. Function and information content of DNA methylation. Nature , 2015, 517(7534): 321-326. [34] Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet , 2011, 12(1): 7-18. [35] Haig D. Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. Heredity (Edinb) , 2014, 113(2): 96-103. [36] Consortium RE, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang ZZ, Wang JR, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu Y-C, Pfenning AR, Wang XC, Claussnitzer M, Liu YP, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, Xie W, Hawkins RD, Lister R, Hong CB, Gascard P, Mungall AJ, Moore R, Chuah E, Tam A, Canfield TK, Hansen RS, Kaul R, Sabo PJ, Bansal MS, Carles A, Dixon JR, Farh KH, Feizi S, Karlic R, Kim A-R, Kulkarni A, Li DF, Lowdon R, Elliott G, Mercer TR, Neph SJ, Onuchic V, Polak P, Rajagopal N, Ray P, Sallari RC, Siebenthall KT, Sinnott-Armstrong NA, Stevens M, Thurman RE, Wu J, Zhang B, Zhou X, Beaudet AE, Boyer LA, De Jager PL, Farnham PJ, Fisher SJ, Haussler D, Jones SJ, Li W, Marra MA, McManus MT, Sunyaev S, Thomson JA, Tlsty TD, Tsai LH, Wang W, Waterland RA, Zhang MQ, Chadwick LH, Bernstein BE, Costello JF, Ecker JR, Hirst M, Meissner A, Milosavljevic A, Ren B, Stamatoyannopoulos JA, Wang T, Kellis M. Integrative analysis of 111 reference human epigenomes. Nature , 2015, 518(7539): 317-330. [37] Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang XQ, Danielsen JMR, Liu F, Yang YG. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res , 2014, 24(2): 177-189. [38] Jia GF, Fu Y, Zhao X, Dai Q, Zheng GQ, Yang Y, Yi CQ, Lindahl T, Pan T, Yang YG, He C. N 6 -Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol , 2012, 7(12): 885-887. [39] Zheng GQ, Dahl JA, Niu YM, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu ZK, Bosmans RPG, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia GF, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell , 2013, 49(1): 18-29. [40] Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet , 2012, 13(5): 343-357. [41] Kaelin WG Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell , 2013, 153(1): 56-69. [42] Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, Zeiher AM, Gaetano C. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci , 2013, 14(9): 17643-17663. [43] Garbes L, Riessland M, Wirth B. Histone acetylation as a potential therapeutic target in motor neuron degenerative diseases. Curr Pharm Des , 2013, 19(28): 5093-5104. [44] Lu X, Deng Y,S Yu DH, Cao HM, Wang L, Liu L, Yu CJ, Zhang YP, Guo XM, Yu G. Histone acetyltransferase p300 mediates histone acetylation of PS1 and BACE1 in a cellular model of Alzheimer's disease. PLoS One , 2014, 9(7): e103067. [45] Zhang B, Wang J, Wang XJ, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, Davies SR, Wang S, Wang P, Kinsinger CR, Rivers RC, Rodriguez H, Townsend RR, Ellis MJC, Carr SA, Tabb DL, Coffey RJ, Slebos RJ, Liebler DC, Nci CPTAC. Proteogenomic characterization of human colon and rectal cancer. Nature , 2014, 513(7518): 382-387. [46] Zhang WW, Li F, Nie L. Integrating multiple 'omics' analysis for microbial biology: application and methodologies. Microbiology , 2010, 156(2): 287-301. [47] ter Kuile BH, Westerhoff HV. Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett , 2001, 500(3): 169-171. [48] Nie L, Wu G, Zhang WW. Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris : A quantitative analysis. Genetics , 2006, 174(4): 2229-2243. [49] Yoon SH, Han M-J, Jeong H, Lee CH, Xia XX, Lee D-H, Shim JH, Lee SY, Oh TK, Kim JF. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol , 2012, 13(5): R37. [50] Korstanje R, Paigen B. From QTL to gene: the harvest begins. Nat Genet , 2002, 31(3): 235-236. [51] Rapp JP, Deng AY. Detection and positional cloning of blood pressure quantitative trait loci: is it possible? Identifying the genes for genetic hypertension. Hypertension , 1995, 25(6): 1121-1128. [52] Yagil C, Hubner N, Monti J, Schulz H, Sapojnikov M, Luft FC, Ganten D, Yagil Y. Identification of hypertension-related genes through an integrated genomic-transcriptomic approach. Circ Res , 2005, 96(6): 617-625. [53] Natrajan R, Weigelt B, Mackay A, Geyer FC, Grigoriadis A, Tan DSP, Jones C, Lord CJ, Vatcheva R, Rodriguez-Pinilla SM, Palacios J, Ashworth A, Reis-Filho JS. An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res Treat , 2010, 121(3): 575-589. [54] Spans L, Helsen C, Clinckemalie L, Van den Broeck T, Prekovic S, Joniau S, Lerut E, Claessens F. Comparative genomic and transcriptomic analyses of LNCaP and C4-2B prostate cancer cell lines. PLoS One , 2014, 9(2): e90002. [55] Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, GuhaThakurta D, Sieberts SK, Monks S, Reitman M, Zhang CS, Lum PY, Leonardson A, Thieringer R, Metzger JM, Yang LM, Castle J, Zhu HY, Kash SF, Drake TA, Sachs A, Lusis AJ. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet , 2005, 37(7): 710-717. [56] Sotiriou C, Neo S-Y, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA , 2003, 100(18): 10393-10398. [57] Sørlie T, Wang YL, Xiao CL, Johnsen H, Naume B, Samaha RR, Borresen-Dale A-L. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics , 2006, 7: 127. [58] Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Gräf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, METABRIC Group, Langerød A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Børresen-Dale AL, Brenton JD, Tavaré S, Caldas C, Aparicio S. The genomic and transcriptomic architecture of 2, 000 breast tumours reveals novel subgroups. Nature , 2012, 486(7403): 346-352. [59] Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, Zhang XW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet , 2011, 43(4): 309-351. [60] Lahtz C, Pfeifer GP. Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol , 2011, 3(1): 51-58. [61] Wrzeszczynski KO, Varadan V, Byrnes J, Lum E, Kamalakaran S, Levine DA, Dimitrova N, Zhang MQ, Lucito R. Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer. PLoS One , 2011, 6(12): e28503. [62] Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu HZ, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, Kaul R, Stamatoyannopoulos JA. Systematic localization of common disease-associated variation in regulatory DNA. Science , 2012, 337(6099): 1190-1195. [63] Yi JM, Dhir M, Van Neste L, Downing SR, Jeschke J, Glöckner SC, de Freitas Calmon M, Hooker CM, Funes JM, Boshoff C, Smits KM, van Engeland M, Weijenberg MP, Iacobuzio-Donahue CA, Herman JG, Schuebel KE, Baylin SB, Ahuja N. Genomic and epigenomic integration identifies a prognostic signature in colon cancer. Clin Cancer Res , 2011, 17(6): 1535-1545. [64] Wittkopp PJ, Haerum BK, Clark AG. Evolutionary changes in cis and trans gene regulation. Nature , 2004, 430(6995): 85-88. [65] Rius M, Lyko F. Epigenetic cancer therapy: rationales, targets and drugs. Oncogene , 2012, 31(39): 4257-4265. [66] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet , 2009, 10(1): 57-63. [67] Cuellar-Partida G, Buske FA, McLeay RC, Whitington T, Noble WS, Bailey TL. Epigenetic priors for identifying active transcription factor binding sites. Bioinformatics , 2012, 28(1): 56-62. [68] Marconett CN, Zhou BY, Rieger ME, Selamat SA, Dubourd M, Fang XH, Lynch SK, Stueve TR, Siegmund KD, Berman BP, Borok Z, Laird-Offringa IA. Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation. PLoS Genet , 2013, 9(6): e1003513. [69] Rodríguez E, Baurecht H, Wahn AF, Kretschmer A, Hotze M, Zeilinger S, Klopp N, Illig T, Schramm K, Prokisch H, Kuhnel B, Gieger C, Harder J, Cifuentes L, Novak N, Weidinger S. An integrated epigenetic and transcriptomic analysis reveals distinct tissue-specific patterns of DNA methylation associated with atopic dermatitis. J Invest Dermatol , 2014, 134(7): 1873-1883. [70] Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J, Prosper F, Garcia-Foncillas J. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer , 2009, 125(11): 2737-2743. [71] Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR, Goel A. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res , 2010, 70(16): 6609-6618. [72] Zhang W, Liu Y, Sun N, Wang D, Boyd-Kirkup J, Dou XY, Han J-DJ. Integrating genomic, epigenomic, and transcriptomic features reveals modular signatures underlying poor prognosis in ovarian cancer. Cell Rep , 2013, 4(3): 542-553. [73] Butterfield DA, Dalle-Donne I. Redox proteomics: from protein modifications to cellular dysfunction and disease. Mass Spectrom Rev , 2014, 33(1): 1-6. [74] González-Domínguez R, García-Barrera T, Vitorica J, Gómez-Ariza JL. Metabolomics reveals significant impairments in the immune system of the APP/PS1 transgenic mice of Alzheimer's disease. Electrophoresis , 2015, 36(4): 577-587. (责任编委: 赵方庆) |
[1] | 梁承志. 从作物基因组分析到整合组学知识库建设[J]. 遗传, 2019, 41(9): 875-882. |
[2] | 刘永鑫,秦媛,郭晓璇,白洋. 微生物组数据分析方法与应用[J]. 遗传, 2019, 41(9): 845-862. |
[3] | 史晓黎,何伊琳,凌宏清. 小麦A基因组测序与进化研究进展[J]. 遗传, 2019, 41(9): 836-844. |
[4] | 张秀泉,王建,熊符,吕伟标,周远青,杨少民,张玉婷,田小燕,连蔚,徐湘民. 染色体10q24.31片段重复导致先天性缺指/缺趾畸形的一个家系致病机理分析[J]. 遗传, 2019, 41(8): 716-724. |
[5] | 梁文权,侯豫,赵存友. 精神分裂症相关单核苷酸多态性调控microRNA功能研究进展[J]. 遗传, 2019, 41(8): 677-685. |
[6] | 何俊,Fernando B. Lopes,吴晓林. 动物基因组选配方法与应用[J]. 遗传, 2019, 41(6): 486-493. |
[7] | 王珏, 黄娟, 许蕊. 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑[J]. 遗传, 2019, 41(5): 422-429. |
[8] | 刘刚,孙飞舟,朱芳贤,冯海永,韩旭. 连续性纯合片段在畜禽基因组研究中的应用[J]. 遗传, 2019, 41(4): 304-317. |
[9] | 赵志达,张莉. 基因组选择在绵羊育种中的应用[J]. 遗传, 2019, 41(4): 293-303. |
[10] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[11] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[12] | 匡卫民, 于黎. 基因组时代线粒体基因组拼装策略及软件应用现状[J]. 遗传, 2019, 41(11): 979-993. |
[13] | 张高华, 于树涛, 王鹤, 王旭达. 高油酸花生发芽期低温胁迫转录组及差异表达基因分析[J]. 遗传, 2019, 41(11): 1050-1059. |
[14] | 王凤红,张磊,李晓凯,范一星,乔贤,龚高,严晓春,张令天,王志英,王瑞军,刘志红,王志新,何利兵,张燕军,李金泉,赵艳红,苏蕊. 山羊基因组研究进展[J]. 遗传, 2019, 41(10): 928-938. |
[15] | 姚雅馨,喇永富,狄冉,刘秋月,胡文萍,王翔宇,储明星. 不同单细胞全基因组扩增方法的比较及MALBAC在辅助生殖中的应用[J]. 遗传, 2018, 40(8): 620-631. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: