[1] | Luo YJ, Gao YQ. Progress in the study of gene polymorphisms and high altitude pulmonary edema susceptibility. Chin J Tuberc Respir Dis, 2011, 34(2): 134-137. | [1] | 罗勇军, 高钰琪. 高原肺水肿遗传易感性机制的研究进展. 中华结核和呼吸杂志, 2011, 34(2): 134-137. | [2] | Jiang Y, Wang LC, Wang JB. Pathogenesis, prevention and treatment of high altitude pulmonary edema: research advances. J Int Pharm Res, 2016, 43(1): 139-145. | [2] | 姜艳, 王雷琛, 王剑波. 高原肺水肿发病机制及防治研究进展. 国际药学研究杂志, 2016, 43(1): 139-145. | [3] | Yang YZ, Wang YP, Ma L, Du Y. Genome-wide association study of high-altitude pulmonary edema in Han Chinese. Hereditas (Beijing), 2013, 35(11): 1291-1299. | [3] | 杨应忠, 王亚平, 马兰, 杜洋, 格日力. 中国汉族高原肺水肿易感基因的全基因组关联研究. 遗传, 2013, 35(11): 1291-1299. | [4] | Hotta J, Hanaoka M, Droma Y, Katsuyama Y, Ota M, Kobayashi T. Polymorphisms of renin-angiotensin system genes with high-altitude pulmonary edema in Japanese subjects. Chest, 2004, 126(3): 825-830. | [5] | Charu R, Stobdan T, Ram RB, Khan AP, Qadar Pasha MA, Norboo T, Afrin F. Susceptibility to high altitude pulmonary oedema: role of ACE and ET-1 polymorphisms. Thorax, 2006, 61(11): 1011-1012. | [6] | Dehnert C, Weymann J, Montgomery HE, Woods D, Maggiorini M, Scherrer U, Gibbs JS, B?rtsch P. No association between high-altitude tolerance and the ACE I/D gene polymorphism. Med Sci Sports Exerc, 2002, 34(12): 1928-1933. | [7] | Qi Y, Sun JY, Zhu TC, Wang W, Liu J, Zhou WY, Qiu CC, Zhao D. Association of angiotensin-converting enzyme gene insertion/deletion polymorphism with high-altitude pulmonary oedema: a meta-analysis. J Renin Angiotensin Aldosterone Syst, 2011, 12(4): 617-623. | [8] | Droma Y, Hanaoka M, Ota M, Katsuyama Y, Koizumi T, Fujimoto K, Kobayashi T, Kubo K. Positive association of the endothelial nitric oxide synthase gene polymorphisms with high-altitude pulmonary edema. Circulation, 2002, 106(7): 826-830. | [9] | Wang P, Koehle MS, Rupert JL. Genotype at the missense G894T polymorphism (Glu298Asp) in the NOS3 gene is associated with susceptibility to acute mountain sickness. High Alt Med Biol, 2009, 10(3): 261-267. | [10] | Zhou WT, Hu Y, Xu F, Xing YW, Yi LY. Research related to the effects of polymorphisms of eNOS on the sports hypoxia acclimatization to acute mountain sickness. China Sport Sci, 2010, 30(6): 72-75, 96. | [10] | 周文婷, 胡扬, 徐飞, 邢亚卫, 衣龙彦. eNOS基因多态性与急性高山病低氧运动习服效果的关联研究. 体育科学, 2010, 30(6): 72-75, 96. | [11] | Sun YJ, Fang MW, Niu WQ, Li GP, Liu JL, Ding SQ, Xu Y, Yu GS, Dong JQ, Pan YJ, Dong WY, Wang T, Cao JW, Li XB, Wang ZX, Yu GX, Sun HC, Jia ZH, Liu J, Wang XM, Si Q, Wu QX, Zhou WY, Zhu TC, Qiu CC. Endothelial nitric oxide synthase gene polymorphisms associated with susceptibility to high altitude pulmonary edema in Chinese railway construction workers at Qinghai-Tibet over 4 500 meters above sea level. Chin Med Sci J, 2010, 25(4): 215-221. | [12] | Ahsan A, Charu R, Pasha MA, Norboo T, Charu R, Afrin F, Ahsan A, Baig MA. eNOS allelic variants at the same locus associate with HAPE and adaptation. Thorax, 2004, 59(11): 1000-1002. | [13] | Luo YJ, Chen Y, Zhang Y, Zhou QQ, Gao YQ. Association of endothelial nitric oxide synthase (eNOS) G894T polymorphism with high altitude pulmonary edema susceptibility: a meta-analysis. Wilderness Environ Med, 2012, 23(3): 270-274. | [14] | Srivastava S, Bhagi S, Kumari B, Chandra K, Sarkar S, Ashraf MZ. Association of polymorphisms in angiotensin and aldosterone synthase genes of the renin-angiotensin-aldosterone system with high-altitude pulmonary edema. J Renin Angiotensin Aldosterone Syst, 2011, 13(1): 155-160. | [15] | Qi Y, Niu WQ, Zhu TC, Liu JL, Dong WY, Xu Y, Ding SQ, Cui CB, Pan YJ, Yu GS, Zhou WY, Qiu CC. Genetic interaction of Hsp70 family genes polymorphisms with high-altitude pulmonary edema among Chinese railway constructors at altitudes exceeding 4000 meters. Clin Chim Acta, 2009, 405(1-2): 17-22. | [16] | Hanaoka M, Kubo K, Yamazaki Y, Miyahara T, Matsuzawa Y, Kobayashi T, Sekiguchi M, Ota M, Watanabe H. Association of high-altitude pulmonary edema with the major histocompatibility complex. Circulation, 1998, 97(12): 1124-1128. | [17] | Saxena S, Kumar R, Madan T, Gupta V, Muralidhar K, Sarma PU. Association of polymorphisms in pulmonary surfactant protein A1 and A2 genes with high-altitude pulmonary edema. Chest, 2005, 128(3): 1611-1619. | [18] | Stobdan T, Kumar R, Mohammad G, Thinlas T, Norboo T, Iqbal M, Pasha MA. Probable role of beta2-adrenergic receptor gene haplotype in high-altitude pulmonary oedema. Respirology, 2010, 15(4): 651-658. | [19] | Mishra A, Ali Z, Vibhuti A, Kumar R, Alam P, Ram R, Thinlas T, Mohammad G, Pasha MAQ. CYBA and GSTP1 variants associate with oxidative stress under hypobaric hypoxia as observed in high-altitude pulmonary oedema. Clin Sci (Lond), 2012, 122(6): 299-311. | [20] | Yang YZ, Wang YP, Qi YJ, Du Y, Ma L, Ga Q, Ge RL. Endothelial PAS domain protein 1 Chr2: 46441523 (hg18) polymorphism is associated with susceptibility to high altitude pulmonary edema in Han Chinese. Wilderness Environ Med, 2013, 24(4): 315-320. | [21] | Luo YJ, Gao WX, Chen Y, Liu FY, Gao YQ. Rare mitochondrial DNA polymorphisms are associated with high altitude pulmonary edema (HAPE) susceptibility in Han Chinese. Wilderness Environ Med, 2012, 23(2): 128-132. | [22] | Zhang HY. Discussin on family’s sensibility of high altitude pulmonary edema (A abstract on a case of 40-year research in a family). Chin J Appl Physiol, 2008, 24(3): 323. | [22] | 张华耀. 再论急性高原肺水肿家族易感性问题(跟踪一家族在40年里祖孙三代病例摘要). 中国应用生理学杂志, 2008, 24(3): 323. | [23] | Bowne SJ, Humphries MM, Sullivan LS, Kenna PF, Tam LCS, Kiang AS, Campbell M, Weinstock GM, Koboldt DC, Ding L, Fulton RS, Sodergren EJ, Allman D, Millington-Ward S, Palfi A, McKee A, Blanton SH, Slifer S, Konidari I, Farrar GJ, Daiger SP, Humphries P. A dominant mutation in RPE65 identified by whole-exome sequencing causes retinitis pigmentosa with choroidal involvement. Eur J Hum Genet, 2011, 19(10): 1074-1081. | [24] | Walker BA, Wardell CP, Melchor L, Hulkki S, Potter NE, Johnson DC, Fenwick K, Kozarewa I, Gonzalez D, Lord CJ, Ashworth A, Davies FE, Morgan GJ. Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11; 14) myeloma. Blood, 2012, 120(5): 1077-1086. | [25] | Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc, 2009, 4(7): 1073-1081. | [26] | Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods, 2010, 7(4): 248-249. | [27] | Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 2015, 31(16): 2745-2747. | [28] | Rao SQ, Du TF, Xu Q. The application of exome sequencing in human diseases. Hereditas (Beijing), 2014, 36(11): 1077-1086. | [28] | 饶书权, 杜廷福, 许琪. 外显子组测序在人类疾病中的应用. 遗传, 2014, 36(11): 1077-1086. | [29] | Li YF, Zhang HX, Zhang HT, Peng XB, Bai LL, He FC, Qiu ZW, Zhou GQ. Mutation analysis of the pathogenic gene in a Chinese family with hereditary hemochromatosis. Hereditas (Beijing), 2014, 36(11): 1152-1158. | [29] | 李元丰, 张红星, 张海涛, 彭晓波, 白丽丽, 贺福初, 邱泽武, 周钢桥. 一个中国遗传性血色病家系致病基因的突变分析. 遗传, 2014, 36(11): 1152-1158. | [30] | Makrythanasis P, Guipponi M, Santoni FA, Zaki M, Issa MY, Ansar M, Hamamy H, Antonarakis SE. Exome sequencing discloses KALRN homozygous variant as likely cause of intellectual disability and short stature in a consanguineous pedigree. Hum Genomics, 2016, 10: 26. | [31] | Józsi M, Tortajada A, Uzonyi B, De Jorge E G, de Córdoba S R. Factor H-related proteins determine complement-activating surfaces. Trends Immunol, 2015, 36(6): 374-384. | [32] | Abarrategui-Garrido C, Martínez-Barricarte R, López- Trascasa M, de Córdoba SR, Sánchez-Corral P. Characterization of complement factor H-related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome. Blood, 2009, 114(19): 4261-4271. | [33] | Lappano R, Rigiracciolo D, De Marco P, Avino S, Cappello AR, Rosano C, Maggiolini M, De Francesco EM. Recent Advances on the role of G protein-coupled receptors in hypoxia-mediated signaling. AAPS J, 2016, 18(2): 305-310. | [34] | Park HJ, Kim MK, Kim SR, Bae SK, Bae MK. Hypoxia regulates the expression of the neuromedin B receptor through a mechanism dependent on hypoxia-inducible factor-1α. PLoS One, 2013, 8(12): e82868. | [35] | Assinger A, Wang Y, Butler LM, Hansson GK, Yan ZQ, S?derberg-Nauclér C, Ketelhuth DF. Apolipoprotein B100 danger-associated signal 1 (ApoBDS-1) triggers platelet activation and boosts platelet-leukocyte proinflammatory responses. Thromb Haemost, 2014, 112(2): 332-341. | [36] | Clinton A, McMullin MF. The Calreticulin gene and myeloproliferative neoplasms. J Clin Pathol, 2016, 69(10): 841-845. | [37] | Szuts V, Ménesi D, Varga-Orvos Z, Zvara á, Houshmand N, Bitay M, Bogáts G, Virág L, Baczkó I, Szalontai B, Geramipoor A, Cotella D, Wettwer E, Ravens U, Deák F, Puskás LG, Papp JG, Kiss I, Varró A, Jost N. Altered expression of genes for Kir ion channels in dilated cardiomyopathy. Can J Physiol Pharmacol, 2013, 91(8): 648-656. | [38] | Malnic B, Godfrey PA, Buck LB. The human olfactory receptor gene family. Proc Natl Acad Sci USA, 2004, 101(8): 2584-2589. |
|