[1] | Wang S, Xu ZH . Progress in the study of molecular mechanisms of developmental cortex malformations. Chin J Cell Biol, 2011,33(8):837-846. | [1] | 王硕, 许执恒 . 大脑皮层发育畸形及分子遗传机理研究进展. 中国细胞生物学学报, 2011,33(8):837-846. | [2] | Angevine JB Jr, Sidman RL . Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature, 1961,192:766-768. | [3] | Marín O, Rubenstein JL . Cell migration in the forebrain. Annu Rev Neurosci, 2003,26:441-483. | [4] | Marín O, Valiente M, Ge XC, Tsai LH . Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol, 2010,2(2):a001834. | [5] | Ayala R, Shu TZ, Tsai LH . Trekking across the brain: the journey of neuronal migration. Cell, 2007,128(1):29-43. | [6] | Huang Z . Molecular regulation of neuronal migration during neocortical development. Mol Cell Neurosci, 2009,42(1):11-22. | [7] | Tissir F, Goffinet AM . Shaping the nervous system: role of the core planar cell polarity genes. Nat Rev Neurosci, 2013,14(8):525-535. | [8] | LoTurco JJ, Bai JL . The multipolar stage and disruptions in neuronal migration. Trends Neurosci, 2006,29(7):407-413. | [9] | Lui JH, Hansen DV, Kriegstein AR . Development and evolution of the human neocortex. Cell, 2011,146(1):18-36. | [10] | Tabata H, Nakajima K . Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci, 2003,23(31):9996-10001. | [11] | Li W, Wu Q . Protocadherin and the diversity of neurons. Sci Technol Vision, 2013, ( 27):14. | [11] | 李伟, 吴强 . 原钙粘蛋白分子与神经元的多样性. 科技视界, 2013, ( 27):14. | [12] | Ying GX, Wu S, Hou RQ, Huang W, Capecchi MR, Wu Q . The protocadherin gene Celsr3 is required for interneuron migration in the mouse forebrain. Mol Cell Biol, 2009,29(11):3045-3061. | [13] | Peek SL, Mah KM, Weiner JA . Regulation of neural circuit formation by protocadherins. Cell Mol Life Sci, 2017,74(22):4133-4157. | [14] | Wu Q, Li W. From human genome to the development of brain: the regulation and function of protocadherin in the development of brain. In: Qiao ZD, He L, ed. The Enlightment of the Frontier Life. Beijing: Science Press, 2016: 461-477. | [14] | 吴强, 李伟 . 从人类基因组到大脑发育: 原钙粘蛋白在脑发育中的调控与功能研究. 见: 乔中东, 贺林. 前沿生命的启迪. 北京: 科学出版社, 2016: 461-477. | [15] | Garrett AM, Schreiner D, Lobas MA, Weiner JA . γ-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron, 2012,74(2):269-276. | [16] | Suo L, Lu HN, Ying GX, Capecchi MR, Wu Q . Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. J Mol Cell Biol, 2012,4(6):362-376. | [17] | Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR . Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature, 2012,488(7412):517-521. | [18] | Jia ZL, Guo Y, Tang YX, Xu Q, Li BJ, Wu Q . Regulation of the protocadherin Celsr3 gene and its role in globus pallidus development and connectivity. Mol Cell Biol, 2014,34(20):3895-3910. | [19] | Yu Y, Suo L, Wu Q . Protocadherin α gene cluster is required for myelination and oligodendrocyte development. Zool Res, 2012,33(4):362-366. | [19] | 于钰, 索伦, 吴强 . PCDHα在髓鞘形成和少突胶质细胞发育中的作用. 动物学研究, 2012,33(4):362-366. | [20] | Chen WV, Nwakeze CL, Denny CA , O'Keeffe S, Rieger MA, Mountoufaris G, Kirner A, Dougherty JD, Hen R, Wu Q, Maniatis T. Pcdhαc2 is required for axonal tiling and assembly of serotonergic circuitries in mice. Science, 2017,356(6336):406-411. | [21] | Chen BY, Brinkmann K, Chen ZC, Pak CW, Liao YX, Shi SY, Henry L, Grishin NV, Bogdan S, Rosen MK . The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell, 2014,156(1/2):195-207. | [22] | Derry JM, Ochs HD, Francke U . Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell, 1994,78(4):635-644. | [23] | Thrasher AJ . WASp in immune-system organization and function. Nat Rev Immunol, 2002,2(9):635-646. | [24] | Aldrich RA, Steinberg AG, Campbell DC . Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics, 1954,13(2):133-139. | [25] | Takenawa T, Suetsugu S . The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol, 2007,8(1):37-48. | [26] | Alekhina O, Burstein E, Billadeau DD . Cellular functions of WASP family proteins at a glance. J Cell Sci, 2017,130(14):2235-2241. | [27] | Kessels MM, Schwintzer L, Schlobinski D, Qualmann B . Controlling actin cytoskeletal organization and dynamics during neuronal morphogenesis. Eur J Cell Biol, 2011,90(11):926-933. | [28] | Kawauchi T, Hoshino M . Molecular pathways regulating cytoskeletal organization and morphological changes in migrating neurons. Dev Neurosci, 2008,30(1/3):36-46. | [29] | Miki H, Miura K, Takenawa T . N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J, 1996,15(19):5326-5335. | [30] | Padrick SB, Rosen MK . Physical mechanisms of signal integration by WASP family proteins. Annu Rev Biochem, 2010,79(1):707-735. | [31] | Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M . A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol, 2000,2(7):441-448. | [32] | Carlier MF, Ducruix A, Pantaloni D . Signalling to actin: the Cdc42-N-WASP-Arp2/3 connection. Chem Biol, 1999,6(9):R235-R240. | [33] | Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK . Autoinhibition and activation mechanisms of the Wiskott- Aldrich syndrome protein. Nature, 2000,404(6774):151-158. | [34] | Miki H, Sasaki T, Takai Y, Takenawa T . Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature, 1998,391(6662):93-96. | [35] | Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW . The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 1999,97(2):221-231. | [36] | Carlier MF, Nioche P , Broutin-L'Hermite I, Boujemaa R, Le Clainche C, Egile C, Garbay C, Ducruix A, Sansonetti P, Pantaloni D. GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. J Biol Chem, 2000,275(29):21946-21952. | [37] | Rohatgi R, Ho HY, Kirschner MW . Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol, 2000,150(6):1299-1310. | [38] | Okrut J, Prakash S, Wu Q, Kelly MJS, Taunton J . Allosteric N-WASP activation by an inter- SH3 domain linker in Nck. Proc Natl Acad Sci USA, 2015,112(47):E6436-E6445. | [39] | Padrick SB, Cheng HC, Ismail AM, Panchal SC, Doolittle LK, Kim S, Skehan BM, Umetani J, Brautigam CA, Leong JM, Rosen MK . Hierarchical regulation of WASP/WAVE proteins. Mol Cell, 2008,32(3):426-438. | [40] | Lommel S, Benesch S, Rottner K, Franz T, Wehland J, Kühn R . Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep, 2001,2(9):850-857. | [41] | Jain N, Lim LW, Tan WT, George B, Makeyev E, Thanabalu T . Conditional N-WASP knockout in mouse brain implicates actin cytoskeleton regulation in hydrocephalus pathology. Exp Neurol, 2014,254:29-40. | [42] | Sheldon M, Rice DS , D'Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature, 1997,389(6652):730-733. | [43] | Suetsugu S, Tezuka T, Morimura T, Hattori M, Mikoshiba K, Yamamoto T, Takenawa T . Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1. Biochem J, 2004,384(Pt 1):1-8. | [44] | The ENCODE Project Consortium . An integrated encyclopedia of DNA elements in the human genome. Nature, 2012,489(7414):57-74. | [45] | Tsuchiya D, Kitamura Y, Takata K, Sugisaki T, Taniguchi T, Uemura K, Miki H, Takenawa T, Shimohama S . Developmental expression of neural Wiskott-Aldrich syndrome protein (N-WASP) and WASP family verprolin- homologous protein (WAVE)-related proteins in postnatal rat cerebral cortex and hippocampus. Neurosci Res, 2006,56(4):459-469. | [46] | Abe T, Kato M, Miki H, Takenawa T, Endo T . Small GTPase Tc10 and its homologue RhoT induce N-WASP- mediated long process formation and neurite outgrowth. J Cell Sci, 2003,116(Pt 1):155-168. | [47] | Pommereit D, Wouters FS . An NGF-induced Exo70-TC10 complex locally antagonises Cdc42-mediated activation of N-WASP to modulate neurite outgrowth. J Cell Sci, 2007,120(Pt 15):2694-2705. | [48] | Wegner AM, Nebhan CA, Hu L, Majumdar D, Meier KM, Weaver AM, Webb DJ . N-wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses. J Biol Chem, 2008,283(23):15912-15920. | [49] | You JJ, Lin-Chao S . Gas7 functions with N-WASP to regulate the neurite outgrowth of hippocampal neurons. J Biol Chem, 2010,285(15):11652-11666. | [50] | Mohamed AM, Boudreau JR, Yu FPS, Liu J, Chin-Sang ID . The Caenorhabditis elegans Eph receptor activates NCK and N-WASP, and inhibits Ena/VASP to regulate growth cone dynamics during axon guidance. PLoS Genet, 2012,8(2):e1002513. | [51] | Tsai JW, Chen Y, Kriegstein AR, Vallee RB . LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol, 2005,170(6):935-945. | [52] | Bai JJ, Ramos RL, Ackman JB, Thomas AM, Lee RV , LoTurco JJ. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci, 2003,6(12):1277-1283. | [53] | Xiao F, Wang XF, Li JM, Xi ZQ, Lu Y, Wang L, Zeng Y, Guan LF, Yuan J . Overexpression of N-WASP in the brain of human epilepsy. Brain Res, 2008,1233:168-175. | [54] | Kovacs EM, Verma S, Ali RG, Ratheesh A, Hamilton NA, Akhmanova A, Yap AS . N-WASP regulates the epithelial junctional actin cytoskeleton through a non-canonical post-nucleation pathway. Nat Cell Biol, 2011,13(8):934-943. | [55] | Luan Q, Zelter A , MacCoss MJ, Davis TN, Nolen BJ. Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex. Proc Natl Acad Sci USA, 2018,115(7):E1409-E1418. |
|