[1] |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A . Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018,68(6):394-424.
doi: 10.3322/caac.21492
pmid: 30207593
|
[2] |
Magee MS, Kraft CL, Abraham TS, Baybutt TR, Marszalowicz GP, Li P, Waldman SA, Snook AE . GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. Oncoimmunology, 2016,5(10):e1227897.
doi: 10.1080/2162402X.2016.1227897
pmid: 27853651
|
[3] |
Ciardiello D, Vitiello PP, Cardone C, Martini G, Troiani T, Martinelli E, Ciardiello F . Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat Rev, 2019,76:22-32.
doi: 10.1016/j.ctrv.2019.04.003
pmid: 31079031
|
[4] |
Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA . T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther, 2011,19(3):620-626.
doi: 10.1038/mt.2010.272
|
[5] |
Zhang CC, Wang Z, Yang Z, Wang ML, Li SQ, Li YY, Zhang R, Xiong ZX, Wei ZH, Shen JJ, Luo YL, Zhang QZ, Liu LM, Qin H, Liu W, Wu F, Chen W, Pan F, Zhang XQ, Bie P, Liang HJ, Pecher G, Qian C . Phase I escalating- dose trial of CAR-T therapy targeting CEA + metastatic colorectal cancers . Mol Ther, 2017,25(5):1248-1258.
doi: 10.1016/j.ymthe.2017.03.010
pmid: 28366766
|
[6] |
Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA . Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther, 2010,18(4):843-851.
doi: 10.1038/mt.2010.24
pmid: 20179677
|
[7] |
Zhou Z, Lyu XZ, Wu JC, Yang XY, Wu SS, Zhou J, Gu X, Su ZX, Chen SQ . TSNAD: an integrated software for cancer somatic mutation and tumour-specific neoantigen detection. R Soc Open Sci, 2017,4(4):170050.
doi: 10.1098/rsos.170050
pmid: 28484631
|
[8] |
Nonomura C, Otsuka M, Kondou R, Iizuka A, Miyata H, Ashizawa T, Sakura N, Yoshikawa S, Kiyohara Y, Ohshima K, Urakami K, Nagashima T, Ohnami S, Kusuhara M, Mitsuya K, Hayashi N, Nakasu Y, Mochizuki T, Yamaguchi K, Akiyama Y . Identification of a neoantigen epitope in a melanoma patient with good response to anti- PD-1 antibody therapy. Immunol Lett, 2019,208:52-59.
doi: 10.1016/j.imlet.2019.02.004
pmid: 30880120
|
[9] |
Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, Kriley IR, Rosenberg SA . T-Cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med, 2016,375(23):2255-2262.
doi: 10.1056/NEJMoa1609279
pmid: 27959684
|
[10] |
Wirth TC, Kühnel F . Neoantigen targeting-dawn of a new era in cancer immunotherapy? Front Immunol, 2017,8:1848.
doi: 10.3389/fimmu.2017.01848
pmid: 29312332
|
[11] |
Cafri G, Yossef R, Pasetto A, Deniger DC, Lu YC, Parkhurst M, Gartner JJ, Jia L, Ray S, Ngo LT, Jafferji M, Sachs A, Prickett T, Robbins PF, Rosenberg SA . Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nat Commun, 2019,10(1):449.
doi: 10.1038/s41467-019-08304-z
pmid: 30683863
|
[12] |
Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O . Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci, 2003,12(5):1007-1017.
doi: 10.1110/ps.0239403
pmid: 12717023
|
[13] |
Nielsen M, Andreatta M . NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med, 2016,8(1):33.
doi: 10.1186/s13073-016-0288-x
pmid: 27029192
|
[14] |
Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M . NetMHCpan-4.0: improved Peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol, 2017,199(9):3360-3368.
doi: 10.4049/jimmunol.1700893
pmid: 28978689
|
[15] |
Liu G, Li DL, Li Z, Qiu S, Li WH, Chao CC, Yang NB, Li HD, Cheng Z, Song X, Cheng L, Zhang XQ, Wang J, Yang HM, Ma K, Hou Y, Li B . PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity. Gigascience, 2017,6(5):1-11.
doi: 10.1093/gigascience/gix004
pmid: 28327916
|
[16] |
Zhang H, Lund O, Nielsen M . The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics, 2009,25(10):1293-1299.
doi: 10.1093/bioinformatics/btp137
pmid: 19297351
|
[17] |
Peters B, Sette A . Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics, 2005,6:132.
doi: 10.1186/1471-2105-6-132
pmid: 15927070
|
[18] |
Creaney J, Ma S, Sneddon SA, Tourigny MR, Dick IM, Leon JS, Khong A, Fisher SA, Lake RA, Lesterhuis WJ, Nowak AK, Leary S, Watson MW, Robinson BW . Strong spontaneous tumor neoantigen responses induced by a natural human carcinogen. Oncoimmunology, 2015,4(7):e1011492.
doi: 10.1080/2162402X.2015.1011492
pmid: 26140232
|
[19] |
Hu WP, Li YP, Zhang XQ . MHC-I epitope presentation prediction based on transfer learning.Hereditas(Beijing), 41(11):1041-1049.
|
|
胡伟澎, 李佑平, 张秀清 . 基于迁移学习的MHC-I型抗原表位呈递预测. 遗传, 41(11):1041-1049.
|
[20] |
Hu WP, Qiu S, Li YP, Lin XX, Zhang L, Xiang HT, Han X, Chen L, Li S, Li WH, Ren Z, Hou GX, Lin ZL, Lu JL, Liu G, Li B, Lee LJ . EPIP: MHC-I epitope prediction integrating mass spectrometry derived motifs and tissue- specific expression profile. bioRxiv, 2019,567081.
|
[21] |
Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, Baumgartner P, Stevenson BJ, Iseli C, Dangaj D, Czerniecki B, Semilietof A, Racle J, Michel A, Xenarios I, Chiang C, Monos DS, Torigian DA, Nisenbaum HL, Michielin O, June CH, Levine BL, Powell DJ Jr, Gfeller D, Mick R, Dafni U, Zoete V, Harari A, Coukos G, Kandalaft LE. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med, 2018, 10(436): eaao5931.
doi: 10.1126/scitranslmed.aao3003
pmid: 29643228
|
[22] |
Yamamiya D, Mizukoshi E, Kaji K, Terashima T, Kitahara M, Yamashita T, Arai K, Fushimi K, Honda M, Kaneko S . Immune responses of human T lymphocytes to novel hepatitis B virus-derived peptides. PLoS One, 2018,13(6):e0198264.
doi: 10.1371/journal.pone.0198264
pmid: 29856876
|
[23] |
Rodenko B, Toebes M, Hadrup SR, van Esch WJ, Molenaar AM, Schumacher TN, Ovaa H,. Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc, 2006,1(3):1120-1132.
doi: 10.1038/nprot.2006.121
pmid: 17406393
|
[24] |
Kim MS, Ma JS, Yun HY, Cao Y, Kim JY, Chi V, Wang D, Woods A, Sherwood L, Caballero D, Gonzalez J, Schultz PG, Young TS, Kim CH . Redirection of genetically engineered CAR-T cells using bifunctional small molecules. J Am Chem Soc, 2015,137(8):2832-2835.
doi: 10.1021/jacs.5b00106
pmid: 25692571
|
[25] |
Ali M, Foldvari Z, Giannakopoulou E, Böschen ML, Strønen E, Yang W, Toebes M, Schubert B, Kohlbacher O, Schumacher TN, Olweus J . Induction of neoantigen- reactive T cells from healthy donors. Nat Protoc, 2019,14(6):1926-1943.
doi: 10.1038/s41596-019-0170-6
pmid: 31101906
|
[26] |
Lancaster EM, Jablons D, Kratz JR . Applications of next-generation sequencing in eoantigen prediction and cancer vaccine development. Genet Test Mol Biomarkers, 2019,24(2):59-66.
doi: 10.1089/gtmb.2018.0211
pmid: 30907630
|
[27] |
The problem with neoantigen prediction. Nat Biotechnol, 2017,35(2):97.
doi: 10.1038/nbt.3800
pmid: 28178261
|
[28] |
Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV, Parkhurst MR, Ankri C, Prickett TD, Crystal JS, Li YF, El-Gamil M, Rosenberg SA, Robbins PF, . Isolation of neoantigen- specific T cells from tumor and peripheral lymphocytes. J Clin Invest, 2015,125(10):3981-3991.
doi: 10.1172/JCI82416
pmid: 26389673
|
[29] |
Lin QY, Liu Z, Luo MJ, Zheng H, Qiao S, Han CL, Deng DQ, Fan Z, Lu YF, Zhang ZH, Luo QM . Visualizing DC morphology and T cell motility to characterize DC-T cell encounters in mouse lymph nodes under mTOR inhibition. Sci China Life Sci, 2019,62(9):1168-1177.
doi: 10.1007/s11427-018-9470-9
pmid: 31016533
|
[30] |
Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, Duan K, Ang N, Poidinger M, Lee YY, Larbi A, Khng AJ, Tan E, Fu C, Mathew R, Teo M, Lim WT, Toh CK, Ong BH, Koh T, Hillmer AM, Takano A, Lim TKH, Tan EH, Zhai W, Tan DSW, Tan IB, Newell EW . Bystander CD8 + T cells are abundant and phenotypically distinct in human tumour infiltrates . Nature, 2018,557(7706):575-579.
doi: 10.1038/s41586-018-0130-2
pmid: 29769722
|
[31] |
Whiteside SK, Snook JP, Williams MA, Weis JJ . Bystander T Cells: a balancing act of friends and foes. Trends Immunol, 2018,39(12):1021-1035.
doi: 10.1016/j.it.2018.10.003
pmid: 30413351
|
[32] |
Kim TS, Shin EC . The activation of bystander CD8 + T cells and their roles in viral infection . Exp Mol Med, 2019,51(12):1-9.
doi: 10.1038/s12276-019-0351-y
pmid: 31811117
|