遗传 ›› 2022, Vol. 44 ›› Issue (4): 346-357.doi: 10.16288/j.yczz.22-051
• 技术与方法 • 上一篇
收稿日期:
2022-02-23
修回日期:
2022-03-30
出版日期:
2022-04-20
发布日期:
2022-04-08
作者简介:
曾义准,本科,专业方向:细胞生物学。E-mail: 基金资助:
Yizhun Zeng(), Tao Zhang, Ying Xu
Received:
2022-02-23
Revised:
2022-03-30
Online:
2022-04-20
Published:
2022-04-08
Supported by:
摘要:
昼夜节律是指生命活动以24小时为周期的内在性节律。为了适应昼夜环境周期性的变化,地球上几乎所有生物体,包括藻类、细菌、植物、动物等,都演化出一个特殊的系统——生物钟,用以指挥不同组织与器官来适应环境的昼夜交替,维持机体的生理稳态和行为与环境昼夜变化同步。生物钟是指由内源性分子时钟控制的日周生理振荡过程,人类生命活动的各个层面,包括行为、生理、代谢等都受到生物钟的调控,并表现出明显的昼夜节律,如睡眠与苏醒、警觉程度与运动能力、体温波动、泌尿系统、激素分泌、免疫调节以及细胞因子释放等。昼夜节律紊乱可能影响各种疾病的发生、发展、治疗和预后。因此在机体的发育、衰老及疾病的发生、发展过程中评估昼夜节律是否异常具有重要的意义。结合本课题组相关研究,本文较为系统性地讨论了几种适用不同目的鉴别昼夜节律行为异常的方法,分享了具体的实验操作以及分析思路,包括利用代谢笼测量活动节律、自由跑轮活动监测、倒时差、长光照、骨骼光周期以及T7-cycle,并解释了不同行为学方法背后的生理意义。除此之外,本文还探究了不同遗传背景以及不同来源小鼠的昼夜节律在适应外界环境变化上的可能差异,为相关研究提供了可行的参考。根据这些原则及方法,以期帮助相关科研人员选择合适的实验来评估遗传因素、环境因素或疾病对昼夜节律行为的影响。
曾义准, 张陶, 徐璎. 分析小鼠昼夜节律变化的行为学方法[J]. 遗传, 2022, 44(4): 346-357.
Yizhun Zeng, Tao Zhang, Ying Xu. Rapid assessment of circadian behavior in mice[J]. Hereditas(Beijing), 2022, 44(4): 346-357.
图2
代谢笼检测Slc7a11tm1a/tm1a突变小鼠活动变化 A:Slc7a11tm1a/tm1a突变小鼠和同窝野生型小鼠在12 h光照/12 h黑暗光照条件下代谢笼监测的活动情况。Slc7a11tm1a/tm1a突变小鼠和同窝野生型小鼠各10只小鼠,结果用Mean±SEM表示。ZT:给时者时间(zeitgeber time);标准光照下ZT 0表示开灯时间点,ZT 12表示关灯时间点,ZT6指的是开灯后6 h,ZT18指的是关灯后6 h,以此类推。B:小鼠活动的起跳点时间统计图。结果用Mean±SEM表示。C:小鼠活动的峰值相位时间。结果用Mean±SEM表示。D:Slc7a11tm1a/tm1a突变小鼠和同窝野生型小鼠在12 h光照/12 h黑暗条件下代谢笼监测的进食情况。结果用Mean±SEM表示。Slc7a11tm1a/tm1a突变小鼠的活动、起跳点时间、峰值相位和进食量利用双侧Student’s t检测;*P<0.05,**P<0.01,n.s.表示P>0.05。图B、C数据来源本实验室先前的研究[21]。"
图4
Slc7a11tm1a/tm1a突变小鼠对6 h相位前移和后移的响应 A:野生型小鼠6 h提前和延迟时差的跑轮图。图中红色线段表示活动起跳点。B:Slc7a11tm1a/tm1a突变小鼠6 h提前和延迟时差的跑轮图。在第22 d小鼠跑轮距离中断了24 h,图中红色线段表示活动起跳点。C:野生型小鼠(蓝色,同窝野生型小鼠9只)和Slc7a11tm1a/tm1a突变小鼠(红色,Slc7a11tm1a/tm1a突变小鼠5只)适应6 h提前和延迟时差的活动起跳点变化曲线。图中阴影部分对应的是关灯时间段,白色部分对应的是开灯时间段,结果用Mean±SEM表示,野生型和Slc7a11tm1a/tm1a突变小鼠的数据使用双侧Student’s t检测,*P<0.05。"
图6
Slc7a11tm1a/tm1a突变小鼠在骨骼光周期下的跑轮活动 A:野生型小鼠在骨骼光周期下的跑轮图。同窝野生型小鼠6只。B:Slc7a11tm1a/tm1a突变小鼠在骨骼光周期下的跑轮图。Slc7a11tm1a/tm1a突变小鼠6只,图中红色线段表示活动起跳点,黄色线段表示15 min的光照脉冲。C:Slc7a11tm1a/tm1a突变小鼠和野生型小鼠骨骼光周期下的周期统计。Slc7a11tm1a/tm1a突变小鼠和同窝野生型小鼠各5只,结果用Mean±SEM表示,n.s.: P>0.05。D:野生型小鼠(蓝色)和Slc7a11tm1a/tm1a突变小鼠(红色)骨骼光周期下活动起跳点变化曲线。结果用Mean±SEM表示,野生型和Slc7a11tm1a/tm1a突变小鼠的数据使用双侧Student’s t检测。"
附图1
代谢笼和跑轮系统装置图 A:小鼠代谢笼装置图。1:小鼠进食检测装置;2:小鼠饮水检测装置;3:红外感应检测小鼠活动情况装置;4:小鼠消耗氧气以及产生二氧化碳检测装置;5:在使用代谢笼记录之前,首先对代谢笼进行气体平衡;6、7:将记录的小鼠进食、饮水情况传递给计算机;8:整合小鼠活动代谢数据传递至计算机。B:小鼠跑轮装置图。1:光控开关,可以设置不同的开关灯时间,光照周期;2:光照强度调节开关,每一个记录仓的灯光对应一个光强开关;3:机械打点感应器,连接在带有跑轮的笼盒上,实时记录滚轮的转动;4:记录仓,每只小鼠单独放置于记录仓中,保证小鼠之间不会互相干扰;5:带有滚轮的笼盒;6:数据集中处理装置,同一排的七个打点器共同连接于此,并将数据传递给采集盒;7:数据采集盒,可以同时整合多通道的跑轮数据,并传递给计算机;8、9:Clocklab软件,可以实时查看各个记录通道的小鼠活动情况;10:MATLAB软件,一般通过局域网将动物房Clocklab软件记录的数据共享至实验室,通过该软件可以实时查看小鼠的活动情况,以及计算小鼠的活动周期、起跳点等参数。"
[1] |
Ruan W, Yuan XY, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov, 2021, 20(4):287-307.
doi: 10.1038/s41573-020-00109-w pmid: 33589815 |
[2] |
Pilorz V, Astiz M, Heinen KO, Rawashdeh O, Oster H. The concept of coupling in the mammalian circadian clock network. J Mol Biol, 2020, 432(12):3618-3638.
doi: 10.1016/j.jmb.2019.12.037 |
[3] | Yue M, Yang Y, Guo GL, Qin XM. Genetic and epigeneticregulations of mammalian circadian rhythms. Hereditas (Beijing), 2017, 39(12):1122-1137. |
岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展. 遗传, 2017, 39(12):1122-1137. | |
[4] |
Arendt J. Shift work: coping with the biological clock. Occup Med (Lond), 2010, 60(1):10-20.
doi: 10.1093/occmed/kqp162 |
[5] |
Yuan L, Li YR, Xu XD. Chronobiology—2017 Nobel prize in physiology or medicine. Hereditas(Beijing), 2018, 40(1):1-11.
doi: 10.16288/j.yczz.17-397 pmid: 29367188 |
袁力, 李艺柔, 徐小冬. 时间生物学—2017年诺贝尔生理或医学奖解读. 遗传, 2018, 40(1):1-11.
doi: 10.16288/j.yczz.17-397 pmid: 29367188 |
|
[6] |
Scheiermann C, Gibbs J, Ince L, Loudon A. Clocking in to immunity. Nat Rev Immunol, 2018, 18(7):423-437.
doi: 10.1038/s41577-018-0008-4 pmid: 29662121 |
[7] |
Costello HM, Gumz ML. Circadian rhythm, clock genes, and hypertension: recent advances in hypertension. Hypertension, 2021, 78(5):1185-1196.
doi: 10.1161/HYPERTENSIONAHA.121.14519 |
[8] | Mehra R. Sleep apnea and the heart. Cleve Clin J Med, 2019, 86(9 Suppl 1):10-18. |
[9] | Daios S, Savopoulos C, Kanellos I, Goudis CA, Nakou I, Petalloti S, Hadjidimitriou N, Pilalas D, Ziakas A, Kaiafa G. Circadian pattern of acute myocardial infarction and atrial fibrillation in a mediterranean country: a study in diabetic patients. Medicina (Kaunas), 2021, 57(1):41. |
[10] |
Knutsson A. Methodological aspects of shift-work research. Chronobiol Int, 2004, 21(6):1037-1047.
pmid: 15646248 |
[11] |
Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Di Cesare Mannelli L, Racchi M, Govoni S, Lanni C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther, 2022, 7(1):41.
doi: 10.1038/s41392-022-00899-y |
[12] |
Roenneberg T, Merrow M. The circadian clock and human health. Curr Biol, 2016, 26(10):R432-R443.
doi: 10.1016/j.cub.2016.04.011 |
[13] | Pan XY, Mota S, Zhang BY. Circadian clock regulation on lipid metabolism and metabolic diseases. Adv Exp Med Biol, 2020, 1276:53-66. |
[14] |
Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG. The genetics of circadian rhythms, sleep and health. Hum Mol Genet, 2017, 26(R2):R128-R138.
doi: 10.1093/hmg/ddx240 |
[15] |
Honma S. Development of the mammalian circadian clock. Eur J Neurosci, 2020, 51(1):182-193.
doi: 10.1111/ejn.14318 pmid: 30589961 |
[16] |
Dannerfjord AA, Brown LA, Foster RG, Peirson SN. Light input to the mammalian circadian clock. Methods Mol Biol, 2021, 2130:233-247.
doi: 10.1007/978-1-0716-0381-9_18 pmid: 33284449 |
[17] |
Jagannath A, Varga N, Dallmann R, Rando G, Gosselin P, Ebrahimjee F, Taylor L, Mosneagu D, Stefaniak J, Walsh S, Palumaa T, Di Pretoro S, Sanghani H, Wakaf Z, Churchill GC, Galione A, Peirson SN, Boison D, Brown SA, Foster RG, Vasudevan SR. Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nat Commun, 2021, 12(1):2113.
doi: 10.1038/s41467-021-22179-z pmid: 33837202 |
[18] |
Yamaguchi Y, Murai I, Goto K, Doi S, Zhou HH, Setsu G, Shimatani H, Okamura H, Miyake T, Doi M. Gpr19 is a circadian clock-controlled orphan GPCR with a role in modulating free-running period and light resetting capacity of the circadian clock. Sci Rep#, 2021, 11(1): 22406.
doi: M |
[19] | Buhr ED, Vemaraju S, Diaz N, Lang RA, Van Gelder RN. Neuropsin (OPN5) mediates local light-dependent induction of circadian clock genes and circadian photoentrainment in exposed murine skin. Curr Biol, 2019, 29(20): 3478- 3487.e4. |
[20] |
Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG. The genetics of circadian rhythms, sleep and health. Hum Mol Genet, 2017, 26(R2):R128-R138.
doi: 10.1093/hmg/ddx240 |
[21] |
Zhang T, Xie PC, Dong YY, Liu ZW, Zhou F, Pan DJ, Huang ZY, Zhai QC, Gu Y, Wu QY, Tanaka N, Obata Y, Bradley A, Lelliott CJ, Sanger Institute Mouse Genetics Project, Nutter LMJ, McKerlie C, Flenniken AM, Champy MF, Sorg T, Herault Y, De Angelis MH, Durner VG, Mallon AM, Brown SDM, Meehan T, Parkinson HE, Smedley D, Lloyd KCK, Yan J, Gao X, Seong JK, Wang CKL, Sedlacek R, Liu Y, Rozman J, Yang L, Xu Y. High- throughput discovery of genetic determinants of circadian misalignment. PLoS Genet, 2020, 16(1):e1008577.
doi: 10.1371/journal.pgen.1008577 |
[22] |
Liu ZW, Huang ML, Wu X, Shi GS, Xing LJ, Dong Z, Qu ZP, Yan J, Yang L, Panda S, Xu Y. PER1 phosphorylation specifies feeding rhythm in mice. Cell Rep, 2014, 7(5):1509-1520.
doi: 10.1016/j.celrep.2014.04.032 |
[23] |
Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS. Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science, 1994, 264(5159):719-725.
doi: 10.1126/science.8171325 pmid: 8171325 |
[24] | Armstrong SM, Cassone VM, Chesworth MJ, Redman JR, Short RV. Synchronization of mammalian circadian rhythms by melatonin. J Neural Transm Suppl, 1986, 21:375-394. |
[25] |
Metzger J, Wicht H, Korf HW, Pfeffer M. Seasonal variations of locomotor activity rhythms in melatonin- proficient and -deficient mice under seminatural outdoor conditions. J Biol Rhythms, 2020, 35(1):58-71.
doi: 10.1177/0748730419881922 |
[26] |
Kurien P, Hsu PK, Leon J, Wu D, McMahon T, Shi GS, Xu Y, Lipzen A, Pennacchio LA, Jones CR, Fu YH, Ptáček LJ. TIMELESS mutation alters phase responsiveness and causes advanced sleep phase. Proc Natl Acad Sci USA, 2019, 116(24):12045-12053.
doi: 10.1073/pnas.1819110116 |
[27] |
Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, Sato TR, Wang XZ, Bradfield CA, Takahashi JS. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. eLife, 2014, 3:e04617.
doi: 10.7554/eLife.04617 |
[28] | So much more to know. Science, 2005, 309(5731):78-102. |
[29] |
Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA, 2014, 111(45):16219-16224.
doi: 10.1073/pnas.1408886111 |
[30] |
Bass J, Lazar MA. Circadian time signatures of fitness and disease. Science, 2016, 354(6315):994-999.
doi: 10.1126/science.aah4965 |
[31] |
Verlande A, Masri S. Circadian clocks and cancer: timekeeping governs cellular metabolism. Trends Endocrinol Metab, 2019, 30(7):445-458.
doi: 10.1016/j.tem.2019.05.001 |
[32] |
Chellappa SL, Vujovic N, Williams JS, Scheer FAJL. Impact of circadian disruption on cardiovascular function and disease. Trends Endocrinol Metab, 2019, 30(10):767-779.
doi: 10.1016/j.tem.2019.07.008 |
[33] |
Jud C, Schmutz I, Hampp G, Oster H, Albrecht U. A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions. Biol Proced Online, 2005, 7:101-116.
doi: 10.1251/bpo109 |
[34] |
Pan XY, Taylor MJ, Cohen E, Hanna N, Mota S. Circadian clock, time-restricted feeding and reproduction. Int J Mol Sci, 2020, 21(3):831.
doi: 10.3390/ijms21030831 |
[1] | 曹英萍,石金磊,李钟,明凤. 水稻OsFAD2、OsFAD6的克隆及其家族成员对非生物胁迫的响应[J]. 遗传, 2010, 32(8): 839-847. |
[2] | 李经才,于多,王芳,何颖. 生物钟基因研究新进展[J]. 遗传, 2004, 26(1): 89-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: