遗传 ›› 2023, Vol. 45 ›› Issue (9): 813-828.doi: 10.16288/j.yczz.23-169
收稿日期:
2023-06-21
修回日期:
2023-08-08
出版日期:
2023-09-20
发布日期:
2023-08-18
通讯作者:
杨永芳
E-mail:qwlv@genetics.ac.cn;yfyang@genetics.ac.cn
作者简介:
吕倩雯,博士研究生,专业方向:植物分子遗传育种。E-mail: 基金资助:
Qianwen Lv1,2(), Yongfang Yang1(
)
Received:
2023-06-21
Revised:
2023-08-08
Online:
2023-09-20
Published:
2023-08-18
Contact:
Yongfang Yang
E-mail:qwlv@genetics.ac.cn;yfyang@genetics.ac.cn
Supported by:
摘要:
作为植物体内一类重要的信号分子,小肽在飞摩尔(fmol)级的浓度下被相应的细胞质膜类受体激酶识别并结合,开启小肽-受体介导的细胞间信号转导过程,从而调控植物干细胞的生长与增殖,调节根、茎、叶、花和果实等多种植物器官的发育,协调植物响应生物和非生物胁迫等多种生理过程。随着研究的不断深入,越来越多的报道揭示了小肽在水稻(Oryza sativa)、玉米(Zea mays)、马铃薯(Solanum tuberosum)及番茄(Solanum lycopersicum)等多种作物农艺性状中的重要调控功能,暗示着小肽信号在作物遗传改良中的巨大应用潜力。本文系统总结了小肽-受体介导的信号转导模式在植物中的生物学功能及分子机制,重点综述了小肽在调控作物产量、品质和抗性等重要农艺性状中的研究进展,并讨论了小肽信号应用于作物育种改良的策略,最后提出了小肽研究的未来方向。
吕倩雯, 杨永芳. 植物小肽信号生物学功能及其在作物改良中研究进展[J]. 遗传, 2023, 45(9): 813-828.
Qianwen Lv, Yongfang Yang. The biological functions of peptide signaling in plant and the advances on its utilization for crop improvement[J]. Hereditas(Beijing), 2023, 45(9): 813-828.
[1] |
Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BPA. The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell, 2015, 27(8): 2095-2118.
doi: 10.1105/tpc.15.00440 |
[2] |
Katsir L, Davies KA, Bergmann DC, Laux T. Peptide signaling in plant development. Curr Biol, 2011, 21(9): R356-R364.
doi: 10.1016/j.cub.2011.03.012 |
[3] |
Takahashi F, Hanada K, Kondo T, Shinozaki K. Hormone-like peptides and small coding genes in plant stress signaling and development. Curr Opin Plant Biol, 2019, 51: 88-95.
doi: S1369-5266(19)30028-7 pmid: 31265991 |
[4] |
Chen YL, Fan KT, Hung SC, Chen YR. The role of peptides cleaved from protein precursors in eliciting plant stress reactions. New Phytol, 2020, 225(6): 2267-2282.
doi: 10.1111/nph.v225.6 |
[5] |
Wang SX, Tian L, Liu HJ, Li X, Zhang JH, Chen XY, Jia XM, Zheng X, Wu SB, Chen YH, Yan JB, Wu LJ. Large-scale discovery of non-conventional peptides in maize and Arabidopsis through an integrated peptidogenomic pipeline. Mol Plant, 2020, 13(7): 1078-1093.
doi: 10.1016/j.molp.2020.05.012 |
[6] |
Ogawa-Ohnishi M, Yamashita T, Kakita M, Nakayama T, Ohkubo Y, Hayashi Y, Yamashita Y, Nomura T, Noda S, Shinohara H, Matsubayashi Y. Peptide ligand-mediated trade-off between plant growth and stress response. Science, 2022, 378(6616): 175-180.
doi: 10.1126/science.abq5735 pmid: 36227996 |
[7] |
Hohmann U, Lau K, Hothorn M. The structural basis of ligand perception and signal activation by receptor kinases. Annu Rev Plant Biol, 2017, 68(1): 109-137.
doi: 10.1146/arplant.2017.68.issue-1 |
[8] |
Fletcher JC. Recent advances in Arabidopsis CLE peptide signaling. Trends Plant Sci, 2020, 25(10): 1005-1016.
doi: 10.1016/j.tplants.2020.04.014 |
[9] |
Hirakawa Y. CLAVATA3, a plant peptide controlling stem cell fate in the meristem. Peptides, 2021, 142: 170579.
doi: 10.1016/j.peptides.2021.170579 |
[10] |
Yuan BJ, Wang HZ. Peptide signaling pathways regulate plant vascular development. Front Plant Sci, 2021, 12: 719606.
doi: 10.3389/fpls.2021.719606 |
[11] |
DiGennaro P, Grienenberger E, Dao TQ, Jun JH, Fletcher JC. Peptide signaling molecules CLE5 and CLE6 affect Arabidopsis leaf shape downstream of leaf patterning transcription factors and auxin. Plant Direct, 2018, 2(12): e00103.
doi: 10.1002/pld3.2018.2.issue-12 |
[12] |
Kim MJ, Jeon BW, Oh E, Seo PJ, Kim J. Peptide signaling during plant reproduction. Trends Plant Sci, 2021, 26(8): 822-835.
doi: 10.1016/j.tplants.2021.02.008 |
[13] |
Zhang X, Yang ZH, Wu DS, Yu F. RALF-FERONIA signaling: linking plant immune response with cell growth. Plant Commun, 2020, 1(4): 100084.
doi: 10.1016/j.xplc.2020.100084 |
[14] |
Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol, 2009, 69(4): 473-488.
doi: 10.1007/s11103-008-9435-0 pmid: 19083153 |
[15] |
Guo T, Lu ZQ, Xiong YH, Shan JX, Ye WW, Dong NQ, Kan Y, Yang YB, Zhao HY, Yu HX, Guo SQ, Lei JJ, Liao B, Chai JJ, Lin HX. Optimization of rice panicle architecture by specifically suppressing ligand-receptor pairs. Nat Commun, 2023, 14(1): 1640.
doi: 10.1038/s41467-023-37326-x pmid: 36964129 |
[16] |
Kawamoto N, Del Carpio DP, Hofmann A, Mizuta Y, Kurihara D, Higashiyama T, Uchida N, Torii KU, Colombo L, Groth G, Simon R. A peptide pair coordinates regular ovule initiation patterns with seed number and fruit size. Curr Biol, 2020, 30(22): 4352-4361.e4354.
doi: 10.1016/j.cub.2020.08.050 |
[17] |
Jin J, Xiong LL, Gray JE, Hu B, Chu CC. Two awn-development-related peptides, GAD1 and OsEPFL2, promote seed dispersal and germination in rice. Mol Plant, 2022, 16(3): 485-488.
doi: 10.1016/j.molp.2022.12.011 |
[18] |
Hughes J, Hepworth C, Dutton C, Dunn JA, Hunt L, Stephens J, Waugh R, Cameron DD, Gray JE. Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiol, 2017, 174(2): 776-787.
doi: 10.1104/pp.16.01844 pmid: 28461401 |
[19] |
Shen WZ, Zhang X, Liu JE, Tao KH, Li C, Xiao S, Zhang WQ, Li JF. Plant elicitor peptide signalling confers rice resistance to piercing-sucking insect herbivores and pathogens. Plant Biotechnol J, 2022, 20(5): 991-1005.
doi: 10.1111/pbi.13781 pmid: 35068048 |
[20] |
Breiden M, Simon R. Q&A: how does peptide signaling direct plant development? BMC Biology, 2016, 14(1): 58.
doi: 10.1186/s12915-016-0280-3 |
[21] |
Sun YD, Li L, Macho AP, Han ZF, Hu ZH, Zipfel C, Zhou JM, Chai JJ. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science, 2013, 342(6158): 624-628.
doi: 10.1126/science.1243825 |
[22] |
Tang J, Han ZF, Sun YD, Zhang HQ, Gong XQ, Chai JJ.Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Res, 2015, 25(1): 110-120.
doi: 10.1038/cr.2014.161 pmid: 25475059 |
[23] |
Wang JZ, Li HJ, Han ZF, Zhang HQ, Wang T, Lin GZ, Chang JB, Yang WC, Chai JJ. Allosteric receptor activation by the plant peptide hormone phytosulfokine. Nature, 2015, 525(7568): 265-268.
doi: 10.1038/nature14858 |
[24] |
Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA, Hothorn M. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. Elife, 2016, 5: e15075.
doi: 10.7554/eLife.15075 |
[25] |
Zhang HQ, Lin XY, Han ZF, Qu LJ, Chai JJ. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Res, 2016, 26(5): 543-555.
doi: 10.1038/cr.2016.45 pmid: 27055373 |
[26] |
Xiao Y, Stegmann M, Han ZF, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai JJ. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature, 2019, 572(7768): 270-274.
doi: 10.1038/s41586-019-1409-7 |
[27] |
Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science, 2008, 319(5861): 294.
doi: 10.1126/science.1150083 pmid: 18202283 |
[28] |
Müller R, Bleckmann A, Simon R. The receptor kinase CORYNE of Arabidopsis transmits the stem cell- limiting signal CLAVATA 3 independently of CLAVATA1. Plant Cell, 2008, 20(4): 934-946.
doi: 10.1105/tpc.107.057547 pmid: 18381924 |
[29] |
Shinohara H, Matsubayashi Y. Reevaluation of the CLV3-receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view. Plant J, 2015, 82(2): 328-336.
doi: 10.1111/tpj.2015.82.issue-2 |
[30] |
Hu C, Zhu YF, Cui YW, Cheng KL, Liang W, Wei ZY, Zhu MS, Yin HJ, Zeng L, Xiao Y, Lv MH, Yi J, Hou SW, He K, Li J, Gou XP. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nat Plants, 2018, 4(4): 205-211.
doi: 10.1038/s41477-018-0123-z pmid: 29581511 |
[31] |
Zhou Y, Liu X, Engstrom EM, Nimchuk ZL, Pruneda- Paz JL, Tarr PT, Yan A, Kay SA, Meyerowitz EM. Control of plant stem cell function by conserved interacting transcriptional regulators. Nature, 2015, 517(7534): 377-380.
doi: 10.1038/nature13853 |
[32] | Perales M, Rodriguez K, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV. Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. Proc Natl Acad Sci USA, 2016, 113(41): E6298-E6306. |
[33] |
Rodriguez K, Do A, Senay-Aras B, Perales M, Alber M, Chen WT, Reddy GV. Concentration-dependent transcriptional switching through a collective action of cis- elements. Sci Adv, 2022, 8(32): eabo6157.
doi: 10.1126/sciadv.abo6157 |
[34] |
Su YH, Zhou C, Li YJ, Yu Y, Tang LP, Zhang WJ, Yao WJ, Huang RF, Laux T, Zhang XS. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 2020, 117(36): 22561-22571.
doi: 10.1073/pnas.2015248117 |
[35] |
Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, Man J, Liu L, Lemmon ZH, Jones DS, Van Eck J, Jackson DP, Bartlett ME, Nimchuk ZL, Lippman ZB. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat Genet, 2019, 51(5): 786-792.
doi: 10.1038/s41588-019-0389-8 pmid: 30988512 |
[36] |
Stahl Y, Grabowski S, Bleckmann A, Kühnemuth R, Weidtkamp-Peters S, Pinto KG, Kirschner GK, Schmid JB, Wink RH, Hülsewede A, Felekyan S, Seidel CAM, Simon R. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr Biol, 2013, 23(5): 362-371.
doi: 10.1016/j.cub.2013.01.045 |
[37] |
Stahl Y, Wink RH, Ingram GC, Simon R. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol, 2009, 19(11): 909-914.
doi: 10.1016/j.cub.2009.03.060 |
[38] |
Berckmans B, Kirschner G, Gerlitz N, Stadler R, Simon R. CLE40 signaling regulates root stem cell fate. Plant Physiol, 2020, 182(4): 1776-1792.
doi: 10.1104/pp.19.00914 pmid: 31806736 |
[39] |
Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y. Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science, 2010, 329(5995): 1065-1067.
doi: 10.1126/science.1191132 pmid: 20798316 |
[40] |
Song W, Liu L, Wang JZ, Wu Z, Zhang HQ, Tang J, Lin GZ, Wang YC, Wen X, Li WY, Han ZF, Guo HW, Chai JJ. Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth. Cell Res, 2016, 26(6): 674-685.
doi: 10.1038/cr.2016.62 pmid: 27229311 |
[41] |
Yamada M, Han XW, Benfey PN. RGF1 controls root meristem size through ROS signalling. Nature, 2020, 577(7788): 85-88.
doi: 10.1038/s41586-019-1819-6 |
[42] |
Hirakawa Y, Kondo Y, Fukuda H.TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell, 2010, 22(8): 2618-2629.
doi: 10.1105/tpc.110.076083 |
[43] |
Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science, 2006, 313(5788): 842-845.
doi: 10.1126/science.1128436 pmid: 16902140 |
[44] |
Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA, 2008, 105(39): 15208-15213.
doi: 10.1073/pnas.0808444105 pmid: 18812507 |
[45] |
Qian PP, Song W, Zaizen-Iida M, Kume S, Wang GD, Zhang Y, Kinoshita-Tsujimura K, Chai JJ, Kakimoto T. A Dof-CLE circuit controls phloem organization. Nat Plants, 2022, 8(7): 817-827.
doi: 10.1038/s41477-022-01176-0 pmid: 35817820 |
[46] |
Qian PP, Song W, Yokoo T, Minobe A, Wang GD, Ishida T, Sawa S, Chai JJ, Kakimoto T. The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors. Nat Plants, 2018, 4(12): 1071-1081.
doi: 10.1038/s41477-018-0317-4 pmid: 30518839 |
[47] |
Zhu QK, Shao YM, Ge ST, Zhang MM, Zhang TS, Hu XT, Liu YD, Walker J, Zhang SQ, Xu J. A MAPK cascade downstream of IDA-HAE/HSL2 ligand-receptor pair in lateral root emergence. Nat Plants, 2019, 5(4): 414-423.
doi: 10.1038/s41477-019-0396-x pmid: 30936437 |
[48] |
Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L, Miart F, Sormani R, Hématy K, Renou J, Landrein B, Murphy E, Van De Cotte B, Vernhettes S, De Smet I, Höfte H. Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr Biol, 2018, 28(15): 2452-2458.e4.
doi: S0960-9822(18)30711-5 pmid: 30057301 |
[49] |
Lin GZ, Zhang L, Han ZF, Yang XR, Liu WJ, Li ET, Chang JB, Qi YJ, Shpak ED, Chai JJ. A receptor-like protein acts as a specificity switch for the regulation of stomatal development. Genes Dev, 2017, 31(9): 927-938.
doi: 10.1101/gad.297580.117 |
[50] |
Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev, 2007, 21(14): 1720-1725.
doi: 10.1101/gad.1550707 |
[51] |
Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol, 2009, 50(6): 1019-1031.
doi: 10.1093/pcp/pcp068 |
[52] |
Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I. Stomagen positively regulates stomatal density in Arabidopsis. Nature, 2010, 463(7278): 241-244.
doi: 10.1038/nature08682 |
[53] |
Doll NM, Royek S, Fujita S, Okuda S, Chamot S, Stintzi A, Widiez T, Hothorn M, Schaller A, Geldner N, Ingram G. A two-way molecular dialogue between embryo and endosperm is required for seed development. Science, 2020, 367(6476): 431-435.
doi: 10.1126/science.aaz4131 pmid: 31974252 |
[54] |
Liu C, Shen LP, Xiao Y, Vyshedsky D, Peng C, Sun X, Liu ZW, Cheng LJ, Zhang H, Han ZF, Chai JJ, Wu H-M, Cheung AY, Li C. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination. Science, 2021, 372(6538): 171-175.
doi: 10.1126/science.abc6107 pmid: 33833120 |
[55] |
Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 2009, 21(9): 2655-2671.
doi: 10.1105/tpc.109.069740 |
[56] |
Sankaranarayanan S, Jamshed M, Samuel MA. Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response. Nat Plants, 2015, 1: 15185.
doi: 10.1038/nplants.2015.185 pmid: 27251720 |
[57] |
Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A, Takayama S. Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transduce self-incompatibility signaling in Brassica rapa. Plant Cell, 2007, 19(12): 3961-3973.
doi: 10.1105/tpc.106.049999 pmid: 18065692 |
[58] |
Takayama S, Shimosato H, Shiba H, Funato M, Che FS, Watanabe M, Iwano M, Isogai A. Direct ligand- receptor complex interaction controls Brassica self- incompatibility. Nature, 2001, 413(6855): 534-538.
doi: 10.1038/35097104 |
[59] |
Shiba H, Takayama S, Iwano M, Shimosato H, Funato M, Nakagawa T, Che FS, Suzuki G, Watanabe M, Hinata K, Isogai A. A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-Incompatibility of Brassica species. Plant Physiol, 2001, 125(4): 2095-2103.
pmid: 11299389 |
[60] |
Ge ZX, Bergonci T, Zhao YL, Zou YJ, Du S, Liu MC, Luo XJ, Ruan H, García-Valencia LE, Zhong S, Hou SY, Huang QP, Lai LH, Moura DS, Gu HY, Dong J, Wu HM, Dresselhaus T, Xiao JY, Cheung AY, Qu LJ. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science, 2017, 358(6370): 1596-1600.
doi: 10.1126/science.aao3642 |
[61] |
Zhong S, Li L, Wang ZJ, Ge ZX, Li QY, Bleckmann A, Wang JZ, Song ZH, Shi YH, Liu TX, Li LH, Zhou HB, Wang YY, Zhang L, Wu HM, Lai LH, Gu HY, Dong J, Cheung AY, Dresselhaus T, Qu LJ. RALF peptide signaling controls the polytubey block in Arabidopsis. Science, 2022, 375(6578): 290-296.
doi: 10.1126/science.abl4683 pmid: 35050671 |
[62] |
Liu ML, Wang ZJ, Hou SY, Wang LL, Huang QP, Gu HY, Dresselhaus T, Zhong S, Qu LJ. AtLURE1/ PRK6-mediated signaling promotes conspecific micropylar pollen tube guidance. Plant Physiol, 2021, 186(2): 865-873.
doi: 10.1093/plphys/kiab105 |
[63] |
Zhong S, Liu ML, Wang ZJ, Huang QP, Hou SY, Xu YC, Ge ZX, Song ZH, Huang JY, Qiu XY, Shi YH, Xiao JY, Liu P, Guo YL, Dong J, Dresselhaus T, Gu HY, Qu LJ. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science, 2019, 364(6443): eaau9564.
doi: 10.1126/science.aau9564 |
[64] |
Ding ST, Lv JR, Hu JZ, Wang J, Wang P, Yu JQ, Foyer CH, Shi K. Phytosulfokine peptide optimizes plant growth and defense via glutamine synthetase GS2 phosphorylation in tomato. EMBO J, 2022, 42(6): e111858.
doi: 10.15252/embj.2022111858 |
[65] |
Wang XY, Zhang N, Zhang LN, He YX, Cai C, Zhou JG, Li J, Meng XZ.Perception of the pathogen-induced peptide RGF7 by the receptor-like kinases RGI4 and RGI5 triggers innate immunity in Arabidopsis thaliana. New Phytol, 2021, 230(3): 1110-1125.
doi: 10.1111/nph.v230.3 |
[66] |
Hander T, Fernández-Fernández ÁD, Kumpf RP, Willems P, Schatowitz H, Rombaut D, Staes A, Nolf J, Pottie R, Yao PF, Gonçalves A, Pavie B, Boller T, Gevaert K, Van Breusegem F, Bartels S, Stael S. Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides. Science, 2019, 363(6433): eaar7486.
doi: 10.1126/science.aar7486 |
[67] |
Zheng XJ, Kang S, Jing YP, Ren ZJ, Li LG, Zhou JM, Berkowitz G, Shi JS, Fu AG, Lan WZ, Zhao FG, Luan S. Danger-associated peptides close stomata by OST1- independent activation of anion channels in guard cells. Plant Cell, 2018, 30(5): 1132-1146.
doi: 10.1105/tpc.17.00701 |
[68] |
Liu ZY, Hou SG, Rodrigues O, Wang P, Luo DX, Munemasa S, Lei JX, Liu J, Ortiz-Morea FA, Wang X, Nomura K, Yin C, Wang HB, Zhang W, Zhu-Salzman K, He SY, He P, Shan LB. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature, 2022, 605(7909): 332-339.
doi: 10.1038/s41586-022-04684-3 |
[69] |
Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556(7700): 235-238.
doi: 10.1038/s41586-018-0009-2 |
[70] |
Zhou HP, Xiao F, Zheng Y, Liu GY, Zhuang YF, Wang ZY, Zhang YY, He JX, Fu CX, Lin HH.PAMP-INDUCED SECRETED PEPTIDE3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants. Plant Cell, 2021, 34(2): 927-944.
doi: 10.1093/plcell/koab292 |
[71] |
Nakaminami K, Okamoto M, Higuchi-Takeuchi M, Yoshizumi T, Yamaguchi Y, Fukao Y, Shimizu M, Ohashi C, Tanaka M, Matsui M, Shinozaki K, Seki M, Hanada K. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proc Natl Acad Sci USA, 2018, 115(22): 5810-5815.
doi: 10.1073/pnas.1719491115 pmid: 29760074 |
[72] |
Gutiérrez-Alanís D, Yong-Villalobos L, Jiménez- Sandoval P, Alatorre-Cobos F, Oropeza-Aburto A, Mora-Macías J, Sánchez-Rodríguez F, Cruz-Ramírez A, Herrera-Estrella L. Phosphate starvation-dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling. Dev Cell, 2017, 41(5): 555-570.e3.
doi: S1534-5807(17)30391-X pmid: 28586647 |
[73] |
Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science, 2014, 346(6207): 343-346.
doi: 10.1126/science.1257800 pmid: 25324386 |
[74] |
Oh E, Seo PJ, Kim J. Signaling peptides and receptors coordinating plant root development. Trends Plant Sci, 2018, 23(4): 337-351.
doi: S1360-1385(17)30283-2 pmid: 29366684 |
[75] |
Jin J, Hua L, Zhu ZF, Tan LB, Zhao XH, Zhang WF, Liu FX, Fu YC, Cai HW, Sun XY, Gu P, Xie DX, Sun CQ. GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell, 2016, 28(10): 2453-2463.
doi: 10.1105/tpc.16.00379 |
[76] | Sui ZP, Wang TY, Li HJ, Zhang M, Li YY, Xu RB, Xing GF, Ni ZF, Xin MM. Overexpression of peptide- encoding OsCEP6.1 results in pleiotropic effects on growth in rice (O. sativa). Front Plant Sci, 2016, 7: 228. |
[77] |
Xu RB, Li YF, Sui ZP, Lan TY, Song WJ, Zhang M, Zhang YR, Xing JW. A C-terminal encoded peptide, ZmCEP1, is essential for kernel development in maize. J Exp Bot, 2021, 72(15): 5390-5406.
doi: 10.1093/jxb/erab224 |
[78] | Chu HW, Qian Q, Liang WQ, Yin CS, Tan HX, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, Zhang DB. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol, 2006, 142(3): 1039-1052. |
[79] |
Ren DY, Xu QK, Qiu ZN, Cui YJ, Zhou TT, Zeng DL, Guo LB, Qian Q. FON4 prevents the multi-floret spikelet in rice. Plant Biotechnol J, 2019, 17(6): 1007-1009.
doi: 10.1111/pbi.13083 pmid: 30677211 |
[80] |
Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T, Wu QY, Bartlett M, Jackson D. Enhancing grain- yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat Plants, 2021, 7(3): 287-294.
doi: 10.1038/s41477-021-00858-5 |
[81] |
Xu C, Liberatore KL, MacAlister CA, Huang ZJ, Chu YH, Jiang K, Brooks C, Ogawa-Ohnishi M, Xiong GY, Pauly M, Van Eck J, Matsubayashi Y, van der Knaap E, Lippman ZB. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet, 2015, 47(7): 784-792.
doi: 10.1038/ng.3309 pmid: 26005869 |
[82] |
Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. Engineering quantitative trait variation for crop improvement by genome editing. Cell, 2017, 171(2): 470-480.e8.
doi: S0092-8674(17)30988-1 pmid: 28919077 |
[83] |
Wang XG, Aguirre L, Rodríguez-Leal D, Hendelman A, Benoit M, Lippman ZB. Dissecting cis-regulatory control of quantitative trait variation in a plant stem cell circuit. Nat Plants, 2021, 7(4): 419-427.
doi: 10.1038/s41477-021-00898-x |
[84] |
Reichardt S, Piepho HP, Stintzi A, Schaller A. Peptide signaling for drought-induced tomato flower drop. Science, 2020, 367(6485): 1482-1485.
doi: 10.1126/science.aaz5641 pmid: 32217727 |
[85] |
Stintzi A, Schaller A. Biogenesis of post-translationally modified peptide signals for plant reproductive development. Curr Opin Plant Biol, 2022, 69: 102274.
doi: 10.1016/j.pbi.2022.102274 |
[86] |
Cheng LN, Li RZ, Wang XY, Ge SQ, Wang S, Liu XF, He J, Jiang CZ, Qi MF, Xu T, Li TL. A SlCLV3-SlWUS module regulates auxin and ethylene homeostasis in low light-induced tomato flower abscission. Plant Cell, 2022, 34(11): 4388-4408.
doi: 10.1093/plcell/koac254 |
[87] |
Bessho-Uehara K, Wang DR, Furuta T, Minami A, Nagai K, Gamuyao R, Asano K, Angeles-Shim RB, Shimizu Y, Ayano M, Komeda N, Doi K, Miura K, Toda Y, Kinoshita T, Okuda S, Higashiyama T, Nomoto M, Tada Y, Shinohara H, Matsubayashi Y, Greenberg A, Wu JZ, Yasui H, Yoshimura A, Mori H, McCouch SR, Ashikari M. Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. Proc Natl Acad Sci USA, 2016, 113(32): 8969-8974.
doi: 10.1073/pnas.1604849113 pmid: 27466405 |
[88] |
Xiong LL, Huang YY, Liu ZP, Li C, Yu H, Shahid MQ, Lin YH, Qiao XY, Xiao JY, Gray JE, Jin J. Small EPIDERMAL PATTERNING FACTOR-LIKE2 peptides regulate awn development in rice. Plant Physiol, 2022, 190(1): 516-531.
doi: 10.1093/plphys/kiac278 pmid: 35689635 |
[89] |
Han J, Tan JF, Tu LL, Zhang XL. A peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fibre. Plant Biotechnol J, 2014, 12(7): 861-871.
doi: 10.1111/pbi.12187 pmid: 24666593 |
[90] |
Wang DH, Hu X, Ye HZ, Wang Y, Yang Q, Liang XD, Wang ZL, Zhou YF, Wen MM, Yuan XY, Zheng XM, Ye W, Guo BY, Yusuyin M, Russinova E, Zhou Y, Wang K. Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton. Genome Biol, 2023, 24(1): 49.
doi: 10.1186/s13059-023-02886-0 pmid: 36918913 |
[91] |
Zhang L, Gleason C. Enhancing potato resistance against root-knot nematodes using a plant-defence elicitor delivered by bacteria. Nat Plants, 2020, 6(6): 625-629.
doi: 10.1038/s41477-020-0689-0 pmid: 32514146 |
[92] | Wylie SJ, Adams M, Chalam C, Kreuze J, López-Moya JJ, Ohshima K, Praveen S, Rabenstein F, Stenger D, Wang AM, Zerbini FM, Ictv Report C,. ICTV virus taxonomy profile:Potyviridae. J Gen Virol, 2017, 98(3): 352-354. |
[93] |
Combest MM, Moroz N, Tanaka K, Rogan CJ, Anderson JC, Thura L, Rakotondrafara AM, Goyer A. StPIP1, a PAMP-induced peptide in potato, elicits plant defenses and is associated with disease symptom severity in a compatible interaction with potato virus Y. J Exp Bot, 2021, 72(12): 4472-4488.
doi: 10.1093/jxb/erab078 pmid: 33681961 |
[94] |
Pearce G, Strydom D, Johnson S, Ryan CA. A polypeptide from tomato leaves induces wound- inducible proteinase inhibitor proteins. Science, 1991, 253(5022): 895-897.
doi: 10.1126/science.253.5022.895 pmid: 17751827 |
[95] |
Coppola M, Corrado G, Coppola V, Cascone P, Martinelli R, Digilio MC, Pennacchio F, Rao R. Prosystemin overexpression in tomato enhances resistance to different biotic stresses by activating genes of multiple signaling pathways. Plant Mol Biol Report, 2015, 33(5): 1270-1285.
doi: 10.1007/s11105-014-0834-x |
[96] |
McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA. Structure, expression, and antisense inhibition of the systemin precursor gene. Science, 1992, 255(5051): 1570-1573.
doi: 10.1126/science.1549783 pmid: 1549783 |
[97] |
Orozco-Cardenas M, McGurl B, Ryan CA. Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proc Natl Acad Sci USA, 1993, 90(17): 8273-8276.
pmid: 11607423 |
[98] |
El Oirdi M, El Rahman TA, Rigano L, El Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell, 2011, 23(6): 2405-2421.
doi: 10.1105/tpc.111.083394 |
[99] |
Xu SM, Liao CJ, Jaiswal N, Lee S, Yun DJ, Lee SY, Garvey M, Kaplan I, Mengiste T. Tomato PEPR1 ORTHOLOG RECEPTOR-LIKE KINASE1 regulates responses to systemin, necrotrophic fungi, and insect herbivory. Plant Cell, 2018, 30(9): 2214-2229.
doi: 10.1105/tpc.17.00908 |
[100] |
Zhang H, Hu ZJ, Lei C, Zheng CF, Wang J, Shao SJ, Li X, Xia XJ, Cai XZ, Zhou J, Zhou YH, Yu JQ, Foyer CH, Shi K. A plant phytosulfokine peptide initiates auxin- dependent immunity through cytosolic Ca2+ signaling in tomato. Plant Cell, 2018, 30(3): 652-667.
doi: 10.1105/tpc.17.00537 |
[101] |
Wu J, Liu HM, Ren SC, Li PP, Li X, Lin L, Sun QF, Zhang L, Lin C, Wang YP. Generating an oilseed rape mutant with non-abscising floral organs using CRISPR/Cas9 technology. Plant Physiol, 2022, 190(3): 1562-1565.
doi: 10.1093/plphys/kiac364 pmid: 35951752 |
[102] |
He YH, Zhang ZR, Xu YP, Chen SY, Cai XZ. Genome-wide identification of rapid alkalinization factor family in Brassica napus and functional analysis of BnRALF10 in immunity to Sclerotinia sclerotiorum. Front Plant Sci, 2022, 13: 877404.
doi: 10.3389/fpls.2022.877404 |
[103] |
Li XM, Han HP, Chen M, Yang W, Liu L, Li N, Ding XH, Chu ZH. Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice. Plant Mol Biol, 2017, 93(1-2): 21-34.
doi: 10.1007/s11103-016-0544-x pmid: 27718117 |
[104] |
Jiao PP, Liang YL, Chen SP, Yuan Y, Chen YQ, Hu HH. Bna.EPF2 enhances drought tolerance by regulating stomatal development and stomatal size in Brassica napus. Int J Mol Sci, 2023, 24(9): 8007.
doi: 10.3390/ijms24098007 |
[105] | Li TD, Yang XP, Yu Y, Si XM, Zhai XW, Zhang HW, Dong WX, Gao CX, Xu C. Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol, 2018. |
[106] |
Ormancey M, Guillotin B, San Clemente H, Thuleau P, Plaza S, Combier JP. Use of microRNA-encoded peptides to improve agronomic traits. Plant Biotechnol J, 2021, 19(9): 1687-1689.
doi: 10.1111/pbi.v19.9 |
[107] | Roy S, Lundquist P, Udvardi M, Scheible W-R. Small and mighty: peptide hormones in plant biology. Plant Cell, 2019, 30(8): tpc.118.tt0718. |
[108] |
Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104(46): 18333-18338.
doi: 10.1073/pnas.0706403104 pmid: 17989228 |
[109] |
Goad DM, Zhu CM, Kellogg EA. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. New Phytol, 2017, 216(2): 605-616.
doi: 10.1111/nph.2017.216.issue-2 |
[110] |
Farrokhi N, Whitelegge JP, Brusslan JA. Plant peptides and peptidomics. Plant Biotechnol J, 2008, 6(2): 105-134.
doi: 10.1111/j.1467-7652.2007.00315.x pmid: 18069950 |
[111] |
Wu LM, Han LQ, Li Q, Wang GY, Zhang HW, Li L. Using interactome big data to crack genetic mysteries and enhance future crop breeding. Mol Plant, 2021, 14(1): 77-94.
doi: 10.1016/j.molp.2020.12.012 pmid: 33340690 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: