[1] |
孙自法. 实现环境智能型高产稳产中国科学家新成果开启作物育种新时代. 中国新闻网. (2024-12-14). https://www.chinanews.com.cn/gn/2024/12-14/10336249.shtml.
|
[2] |
李家洋. 智能作物是未来育种5.0时代的一个核心. 中国新闻网. (2023-07-21). https://www.chinanews.com.cn/gn/2023/07-21/10047676.shtml.
|
[3] |
Yu H, Bai SW, Li JY. Towards Breeding5.0: Smart variety by intelligent breeding. Chin Sci Bull, 2024, 69(32): 4687-4690.
|
|
余泓, 白世伟, 李家洋. 迈向育种5.0: 智能品种的智能培育. 科学通报, 2024, 69(32): 4687-4690.
|
[4] |
Wang JY. The 2024 Report on world food security and nutrition status is released. China Food News, 2024.
|
|
王佳仪. 2024年《世界粮食安全和营养状况》报告发布. 中国食品报, 2024.
|
[5] |
Roush K. Global Hunger. Am J Nurs, 2023, 123(1): 17-18.
doi: 10.1097/01.NAJ.0000911504.26248.59
pmid: 36546379
|
[6] |
Jarvis A, Forster PM. Estimated human-induced warming from a linear temperature and atmospheric CO2 relationship. Nat Geosci, 2024, 17(12): 1222-1224.
|
[7] |
Zhao C, Liu B, Piao SL, Wang XH, Lobell DB, Huang Y, Huang MT, Yao YT, Bassu S, Ciais P, Durand JL, Elliott J, Ewert F, Janssens IA, Li T, Lin ED, Liu Q, Martre P, Müller C, Peng SS, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu DH, Liu Z, Zhu Y, Zhu ZC, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114(35): 9326-9331.
|
[8] |
Wang XH, Zhao C, Müller C, Wang CZ, Ciais P, Janssens I, Peñuelas J, Asseng S, Li T, Elliott J, Huang Y, Li L, Piao SL. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat Sustain, 2020, 3(11): 908-916.
|
[9] |
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals-current status, improvements, and perspectives. Biotechnol Adv, 2023, 69: 108248.
|
[10] |
Mascher M, Jayakodi M, Shim H, Stein N. Promises and challenges of crop translational genomics. Nature, 2024, 636(8043): 585-593.
|
[11] |
Salse J, Barnard RL, Veneault-Fourrey C, Rouached H. Strategies for breeding crops for future environments. Trends Plant Sci, 2024, 29(3): 303-318.
|
[12] |
Pincovici S, Cochavi A, Karnieli A, Ephrath J, Rachmilevitch S. Source-sink relations of sunflower plants as affected by a parasite modifies carbon allocations and leaf traits. Plant Sci, 2018, 271: 100-107.
doi: S0168-9452(17)31032-4
pmid: 29650147
|
[13] |
Liang XG, Gao Z, Fu XX, Chen XM, Shen S, Zhou SL. Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield. Front Plant Sci, 2023, 14: 1206829.
|
[14] |
Singh J, Das S, Gupta KJ, Ranjan A, Foyer CH, Thakur JK. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield. Plant Biotechnol J, 2023, 21(8): 1528-1541.
|
[15] |
Schaffer AA, Petreikov M, Miron D, Fogelman M, Spiegelman M, Bnei-Moshe Z, Shen S, Granot D, Hadas R, Dai N, Bar M, Friedman M, Pilowsky M, Gilboa N, Chen L. Modification of carbohydrate content in developing tomato fruit. HortScience, 1997, 32(3): 551.
|
[16] |
Mason TG, Maskell EJ. Studies on the transport of carbohydrates in the cotton plant: II. The factors determining the rate and the direction of movement of sugars. Ann Bot, 1928, 42(3): 571-636.
|
[17] |
Sun F. Research on photosynthesis-a research topic awarded six nobel prizes. J Biol, 1989, (5): 19-23.
|
|
孙凡. 光合作用研究——荣膺六次诺贝尔奖的研究课题. 生物学杂志, 1989, (5): 19-23.
|
[18] |
Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant, 2010, 3(6): 942-955.
|
[19] |
Aluko OO, Li CZ, Wang Q, Liu HB. Sucrose utilization for improved crop yields: a review article. Int J Mol Sci, 2021, 22(9): 4704.
|
[20] |
Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong JH, Xiao LT, Zhang HX. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol J, 2013, 11(9): 1080-1091.
|
[21] |
Li GH, Cui KH, Hu QQ, Wang WC, Pan JF, Zhang G, Shi YG, Nie LX, Huang JL, Peng SB. Phloem unloading in developing rice caryopses and its contribution to non-structural carbohydrate translocation from stems and grain yield formation. Plant Cell Physiol, 2022, 63(10): 1510-1525.
|
[22] |
Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 2024, 305(5691): 1786-1789.
|
[23] |
Tieman D, Zhu GT, Resende MFR, Lin T, Nguyen C, Bies D, Rambla JL, Beltran KSO, Taylor M, Zhang B, Ikeda H, Liu ZY, Fisher J, Zemach I, Monforte A, Zamir D, Granell A, Kirst M, Huang SW, Klee H. A chemical genetic roadmap to improved tomato flavor. Science, 2017, 355(6323): 391-394.
doi: 10.1126/science.aal1556
pmid: 28126817
|
[24] |
Wang ET, Xu X, Zhang L, Zhang H, Lin L, Wang Q, Li Q, Ge S, Lu BR, Wang W, He ZH. Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication. BMC Evol Biol, 2010, 10: 108.
|
[25] |
Wei X, Chen MJ, Zhang Q, Gong JY, Liu J, Yong KC, Wang Q, Fan JJ, Chen SH, Hua H, Luo ZW, Zhao XY, Wang X, Li W, Cong J, Yu XT, Wang ZH, Huang RP, Chen JX, Zhou XY, Qiu J, Xu P, Murray J, Wang H, Xu Y, Xu CW, Xu G, Yang JL, Han B, Huang XH. Genomic investigation of 18,421 lines reveals the genetic architecture of rice. Science, 2024, 385(6704): eadm8762.
|
[26] |
Proels RK, Hause B, Berger S, Roitsch T. Novel mode of hormone induction of tandem tomato invertase genes in floral tissues. Plant Mol Biol, 2003, 52(1): 191-201.
doi: 10.1023/a:1023973705403
pmid: 12825699
|
[27] |
Wang ET, Wang JJ, Zhu XD, Hao W, Wang LY, Li Q, Zhang LX, He W, Lu BR, Lin HX, Ma H, Zhang GQ, He ZH. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40(11): 1370-1374.
doi: 10.1038/ng.220
pmid: 18820698
|
[28] |
Karasov TL, Chae E, Herman JJ, Bergelson J. Mechanisms to mitigate the trade-off between growth and defense. Plant cell, 2017, 29(4): 666-680.
|
[29] |
Shen S, Ma S, Wu LM, Zhou SL, Ruan YL. Winners take all: competition for carbon resource determines grain fate. Trends Plant Sci, 2023, 28(8): 893-901.
doi: 10.1016/j.tplants.2023.03.015
pmid: 37080837
|
[30] |
Lou HC, Li SJ, Shi ZH, Zou YP, Zhang YQ, Huang XZ, Yang DD, Yang YF, Li ZY, Xu C. Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice. Cell, 188(2):530-549.
|
[31] |
Ahmad N, Awan MJA, Amin I, Mansoor S. Perfecting prime editing: achieving precise edits in dicots. Trends Plant Sci, 2025, S1360- 1385(24)00341-8.
|
[32] |
Li ZM, Palmer WM, Martin AP, Wang RQ, Rainsford F, Jin Y, Patrick JW, Yang YJ, Ruan YL. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J Exp Bot, 2012, 63(3): 1155-1166.
doi: 10.1093/jxb/err329
pmid: 22105847
|