遗传

• 综述 •    

红肉与白肉健康效应的多学科证据评估与机制整合

江山1,2,3,雷宇航1,2,3,廖天赐1,2,3,钟易1,2,3,甘麦邻1,2,3,朱砺1,2,3,沈林園1,2,3   

  1. 1.四川农业大学动物科技学院,猪禽种业全国重点实验室,成都 611130

    2.四川农业大学动物科技学院,农业农村部畜禽生物组学重点实验室,成都 611130

    3.四川农业大学,畜禽种质资源与生物育种四川省重点实验室,成都 611130
  • 发布日期:2025-11-04

Shan Jiang1,2,3, Yuhang Lei1,2,3, Tianci Liao1,2,3, Yi Zhong1,2,3, Mailin Gan1,2,3, Li Zhu1,2,3, Linyuan Shen1,2,3   

  1. 1. State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China

    2. Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China

    3. Farm Animal Germplasm Resources and Biotech Breeding Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
  • Online:2025-11-04
  • Supported by:
    四川省科技计划项目(编号:2021YFYZ0030),国家现代农业产业技术体系四川生猪创新团队项目(编号:SCCXTD-2025-8)和国家生猪产业技术体系(CARS-35-PIG)项目资助

摘要: 红肉与白肉的健康效应争议长期存在,传统基于动物种属的二元分类体系难以匹配其营养异质性与疾病风险的复杂性。本文通过整合流行病学、分子机制及食品科学多维证据,系统重构了肉类健康评估框架。研究证实,传统红白肉定义因忽视种内差异及跨物种悖论,需转向基于部位、加工方式的精准分类;加工肉作为1类致癌物与未加工红肉风险存在本质差异,后者适量摄入可平衡血红素铁/维生素B12营养与风险;在致病机制上,红肉中血红素铁、Neu5Gc、TMAO及加工衍生的NOCs、HCAs/PAHs构成多重病理网络;而白肉因缺失核心毒性成分且富含ω-3 PUFA(EPA/DHA抗炎与神经保护),多数研究提示可能会降低心血管代谢风险,但高温加工可削弱其优势。基于此,国际指南形成“严控加工肉、限量未加工红肉、优选白肉”共识,并发展基因筛查、益生菌调控菌群-TMAO轴及低温烹饪等精准策略。未来需突破单细胞多组学解析器官特异性损伤、建立基因-菌群-营养素三元交互的个体化风险评估模型,并通过CRISPR育种靶向降低红肉毒性及AI优化膳食推荐系统,推动肉类消费向营养-健康-环境可持续性协同进化。

关键词: 红肉, 白肉, 致病机制, 精准营养策略, 健康风险评估, 膳食指南

Abstract: The health effects of red and white meat have been debated for decades, and the conventional species-based binary classification fails to capture their nutritional heterogeneity and differential disease risks. This review reconstructs the meat-health evaluation paradigm by integrating multidisciplinary evidence from epidemiology, molecular biology, and food science. Current findings demonstrate that traditional definitions overlook intra-species variation and inter-species paradoxes, underscoring the need to classify meat more precisely by anatomical cut and processing method. Processed meat, recognized as a Group 1 carcinogen, presents fundamentally distinct hazards from unprocessed red meat; moderate consumption of the latter may allow a reasonable balance between essential nutrients such as heme iron and vitamin B12 and associated pathophysiological risks. Mechanistically, the adverse effects of red meat are driven by a convergent network involving heme iron, N-glycolylneuraminic acid (Neu5Gc), trimethylamine-N-oxide (TMAO), and processing-derived toxicants including N-nitroso compounds (NOCs), heterocyclic amines (HCAs), and polycyclic aromatic hydrocarbons (PAHs). In contrast, white meat generally lacks these key toxic components and is enriched in omega-3 polyunsaturated fatty acids (PUFAs) such as EPA and DHA, which provide cardioprotective and neuroprotective benefits—although excessive high-temperature cooking may diminish these advantages. Correspondingly, international dietary guidelines are converging toward the principle of “strictly restrict processed meat, limit unprocessed red meat, and prioritize white meat.” Emerging precision strategies include genetic risk stratification, probiotic and dietary fiber interventions targeting the gut microbiota-TMAO axis, and low-temperature/clean-label processing technologies. Future directions should leverage single-cell and spatial multi-omics to elucidate organ-specific toxicity, build tripartite gene-microbiota-nutrient interaction models to enable individualized risk prediction, and apply CRISPR-based breeding to improve the nutritional-toxicological profile of red meat, while integrating AI-driven personalized dietary guidance. Collectively, these advancements will drive meat consumption toward a more nutritionally optimized, health-protective, and environmentally sustainable paradigm.

Key words: red meat, white meat, pathogenic mechanisms, precision nutrition strategies, health risk assessment, dietary guidelines