[1] | Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 1992, 256(5055): 385-387. | [2] | Agre P. The aquaporin water channels. Proc Am Thorac Soc, 2006, 3(1): 5-13. | [3] | Johanson U, Karlsson M, Johansson I, Gustavsson S, Sj?vall S, Fraysse L, Weig AR, Kjellbom P. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol, 2001, 126(4): 1358-1369. | [4] | Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ. From genome to function: the Arabidopsis aquaporins. Genome Biol, 2001, 3: research0001.1. | [5] | Wallace IS, Choi WG, Roberts DM. The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta, 2006, 1758(8): 1165-1175. | [6] | Kammerloher W, Fischer U, Piechottka GP, Sch?ffner AR. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J, 1994, 6(2): 187-199. | [7] | Johansson I, Larsson C, Ek B, Kjellbom P. The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca 2+ and apoplastic water potential. Plant Cell, 1996, 8(7): 1181-1191. | [8] | Kruse E, Uehlein N, Kaldenhoff R. The aquaporins. Genome Biol, 2006, 7: 206. | [9] | Bienert GP, Cavez D, Besserer A, Berny MC, Gilis D, Rooman M, Chaumont F. A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers. Biochem J, 2012, 445(1): 101-111. | [10] | daSilva LLP, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F. Endoplasmic reticulum export sites and golgi bodies behave as single mobile secretory units in plant cells. Plant Cell, 2004, 16(7): 1753-1771. | [11] | Hanton SL, Matheson LA, Chatre L, Brandizzi F. Dynamic organization of COPII coat proteins at endoplasmic reticulum export sites in plant cells. Plant J, 2009, 57(6): 963-974. | [12] | Hachez C, Besserer A, Chevalier AS, Chaumont F. Insights into plant plasma membrane aquaporin trafficking. Trends Plant Sci, 2013, 18(6): 344-352. | [13] | Miller EA, Beilharz TH, Malkus PN, Lee MCS, Hamamoto S, Orci L, Schekman R. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell, 2003, 114(4): 497-509. | [14] | Zelazny E, Miecielica U, Borst JW, Hemminga MA, Chaumont F. An N-terminal diacidic motif is required for the trafficking of maize aquaporins ZmPIP2;4 and ZMPIP2;5 to the plasma membrane. Plant J, |
[1] |
Zeqin Li,Jintao Li,Jie Bing,Genfa Zhang.
The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana
[J]. Hereditas(Beijing), 2019, 41(6): 534-547.
|
[2] |
Jianhui Ma, Doudou Tong, Wenli Zhang, Daijing Zhang, Yun Shao, Yun Yang, Lina Jiang.
Identification and analysis of the NAC transcription factor family in Triticum urartu
[J]. HEREDITAS(Beijing), 2016, 38(3): 243-253.
|
[3] |
Yue Li, Xiaodong Liu, Yongmei Dong, Zongming Xie, Shouyi Chen.
Cloning and functional analysis of the cotton Trihelix transcription factor GhGT29
[J]. HEREDITAS(Beijing), 2015, 37(12): 1218-1227.
|
[4] |
Xuehuan Gao, Fengling Fu, Wei Mu, Shufeng Zhou, Suzhi Zhang, Wanchen Li.
Cloning and functional validation of promoter of mo-molybdopterin cofactor sulfurase gene in maize
[J]. HEREDITAS(Beijing), 2014, 36(6): 584-591.
|
[5] |
XIAO Dong-Chang ZHANG Zhi-Jun XU Ying-Wu YANG Li ZHANG Feng-Xue.
Cloning and functional analysis of Phyllostachys edulis MYB tran-scription factor PeMYB2
[J]. HEREDITAS, 2013, 35(10): 1217-1225.
|
[6] |
SUN Li-Jun, LI Da-Yong, ZHANG Hui-Juan, SONG Feng-Ming.
Functions of NAC transcription factors in biotic and abiotic stress responses in plants
[J]. HEREDITAS, 2012, 34(8): 993-1002.
|
[7] |
WANG Fei-Juan, ZHU Cheng.
Heterologous expression of a rice syntaxin-related protein KNOLLE gene (OsKNOLLE) in yeast and its functional analysis in the role of abiotic stress
[J]. HEREDITAS, 2011, 33(11): 1251-1257.
|
[8] |
FU Gan-Tang, TU Di-Qiu.
Expression profiles of AtWRKY25, AtWRKY26 and AtWRKY33 under abiotic stresses
[J]. HEREDITAS, 2010, 32(8): 848-856.
|
[9] |
CAO Yang-Ping, DAN Jin-Lei, LI Zhong, MENG Feng.
Isolation of OsFAD2, OsFAD6 and FAD family members response to abiotic stresses in Oryza sativa L.
[J]. HEREDITAS, 2010, 32(8): 839-847.
|
[10] |
DING Yan-Fei, WANG Guang-Yue, FU E-Ping, SHU Cheng.
The role of miR398 in plant stress responses
[J]. HEREDITAS, 2010, 32(2): 129-134.
|
[11] |
ZHANG Mei, LIU Wei, BI Yu-Ping.
Dehydration-responsive element-binding (DREB) transcription factor in plants and its role during abiotic stresses
[J]. HEREDITAS, 2009, 31(3): 236-244.
|
[12] |
SHEN Ya-Ou, LIN Hai-Jian, ZHANG Zhi-Ming, GAO Shi-Bin, PAN Guang-Tang.
Advances in study of plant miRNAs under stressed environmental conditions
[J]. HEREDITAS, 2009, 31(3): 227-235.
|
[13] |
LIN Hai-Jian, ZHANG Zhi-Meng, CHEN E-Ou, GAO Shi-Bin, BO Guang-Tang.
Advances of microarray analysis on plant gene expression under en-vironmental stresses
[J]. HEREDITAS, 2009, 31(12): 1192-1204.
|
[14] |
HUANG Ji, ZHANG Hong-Sheng.
The plant TFⅢA-type zinc finger proteins and their roles in abiotic stress tolerance
[J]. HEREDITAS, 2007, 29(8): 915-922.
|
[15] |
GUO Shu-Qiao, HUANG Ji, JIANG Yan, ZHANG Hong-Sheng.
Cloning and characterization of RZF71 encoding a C2H2-type zinc finger protein from rice
[J]. HEREDITAS, 2007, 29(5): 607-607―613.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|