Hereditas(Beijing) ›› 2022, Vol. 44 ›› Issue (10): 926-936.doi: 10.16288/j.yczz.22-222
• Research Article • Previous Articles Next Articles
Jingya Ye1(), Aijie Huang1, Zhenzhen Fu1, Yingyun Gong1, Hongyuan Yang2, Hongwen Zhou1(
)
Received:
2022-06-30
Revised:
2022-09-12
Online:
2022-10-20
Published:
2022-09-26
Contact:
Zhou Hongwen
E-mail:yezi88999@163.com;drhongwenzhou@njmu.edu.cn
Supported by:
Jingya Ye, Aijie Huang, Zhenzhen Fu, Yingyun Gong, Hongyuan Yang, Hongwen Zhou. A study of congenital generalized lipodystrophy (CGL) caused by BSCL2 gene mutation[J]. Hereditas(Beijing), 2022, 44(10): 926-936.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Laboratory tests of the CGL family"
检查项目 | 正常值范围 | 患者 | 父亲 | 母亲 | 弟弟 |
---|---|---|---|---|---|
糖化血红蛋白(%) | 4.0~6.0 | 10.6 | 5.5 | 4.8 | 5.0 |
谷丙转氨酶(U/L) | 7.0~40.0 | 42.1 | 35 | 15 | 12 |
谷草转氨酶(U/L) | 13.0~35.0 | 20.5 | 26 | 19 | 18 |
碱性磷酸酶(U/L) | 30.0~120.0 | 114.9 | 54 | 78 | 118 |
甘油三酯(mmol/L) | 0~2.25 | 2.31 | 0.6 | 0.82 | 1.19 |
胆固醇(mmol/L) | 3.0~5.7 | 2.98 | 3.92 | 3.87 | 3.02 |
高密度胆固醇酯(mmol/L) | 1.03~1.55 | 0.82 | 2.1 | 1.88 | 1.32 |
低密度胆固醇酯(mmol/L) | 2.6~4.1 | 1.78 | 1.6 | 1.77 | 1.33 |
促甲状腺素(mIU/L) | 0.27~4.2 | 0.834 | 0.662 | 1.840 | 1.890 |
游离三碘甲状腺原氨酸(pmol/L) | 3.1~6.8 | 4.3 | 5.23 | 5.28 | 6.89 |
游离甲状腺素(pmol/L) | 12.0~22.0 | 13.89 | 20.70 | 18.46 | 22.79 |
空腹血糖(mmol/L) | 3.9~6.1 | 16.37 | 6.21 | 5.11 | 5.33 |
2 h血糖(mmol/L) | < 7.8 | 18.85 | 5.04 | 6.7 | 6.61 |
空腹胰岛素(pmol/L) | 17.8~173.0 | 1001 | 47 | 53 | 30 |
2 h胰岛素(pmol/L) | 1460 | 539 | 483 | 393 | |
空腹C肽(pmol/L) | 370.0~1470.0 | 1512 | 82 | 209 | 170 |
2 h C肽(pmol/L) | 2521 | 1505 | 2248 | 1798 | |
瘦素(μg/L) | 0.14 | 0.55 | 3.80 | 1.53 |
[1] |
Agarwal AK, Garg A. Genetic disorders of adipose tissue development, differentiation, and death. Annu Rev Genomics Hum Genet, 2006, 7: 175-199.
pmid: 16722806 |
[2] |
Agarwal AK, Garg A. Genetic basis of lipodystrophies and management of metabolic complications. Annu Rev Med, 2006, 57: 297-311.
pmid: 16409151 |
[3] |
Fei WH, Du XM, Yang HY. Seipin, adipogenesis and lipid droplets. Trends Endocrinol Metab, 2011, 22(6): 204-210.
doi: 10.1016/j.tem.2011.02.004 |
[4] |
Haque WA, Shimomura I, Matsuzawa Y, Garg A. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab, 2002, 87(5): 2395.
doi: 10.1210/jcem.87.5.8624 |
[5] |
Farooqi IS, Keogh JM, Kamath S, Jones S, Gibson WT, Trussell R, Jebb SA, Lip GY, O’Rahilly S. Partial leptin deficiency and human adiposity. Nature, 2001, 414(6859): 34-35.
doi: 10.1038/35102112 |
[6] |
Pareja-Galeano H, Santos-Lozano A, Sanchis-Gomar F, Fiuza-Luces C, Garatachea N, Gálvez BG, Lucia A, Emanuele E. Circulating leptin and adiponectin concentrations in healthy exceptional longevity. Mech Ageing Dev, 2017, 162: 129-132.
doi: S0047-6374(16)30019-7 pmid: 26944227 |
[7] |
Van Maldergem L, Magré J, Khallouf TE, Gedde-Dahl T, Delépine M, Trygstad O, Seemanova E, Stephenson T, Albott CS, Bonnici F, Panz VR, Medina JL, Bogalho P, Huet F, Savasta S, Verloes A, Robert JJ, Loret H, De Kerdanet M, Tubiana-Rufi N, Mégarbané A, Maassen J, Polak M, Lacombe D, Kahn CR, Silveira EL, D'Abronzo FH, Grigorescu F, Lathrop M, Capeau J, O'Rahilly S. Genotype-phenotype relationships in Berardinelli-Seip congenital lipodystrophy. J Med Genet, 2002, 39(10): 722-733.
pmid: 12362029 |
[8] |
Agarwal AK, Simha V, Oral EA, Moran SA, Gorden P, O'Rahilly S, Zaidi Z, Gurakan F, Arslanian SA, Klar A, Ricker A, White NH, Bindl L, Herbst K, Kennel K, Patel SB, Al-Gazali L, Garg A. Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J Clin Endocrinol Metab, 2003, 88(10): 4840-4847.
doi: 10.1210/jc.2003-030855 |
[9] |
Agarwal AK, Garg A. Seipin: a mysterious protein. Trends Mol Med, 2004, 10(9): 440-444.
pmid: 15350896 |
[10] |
Jiang M, Gao MM, Wu CM, He H, Guo XJ, Zhou ZM, Yang HY, Xiao XH, Liu G, Sha JH. Lack of testicular seipin causes teratozoospermia syndrome in men. Proc Natl Acad Sci USA, 2014, 111(19): 7054-7059.
doi: 10.1073/pnas.1324025111 |
[11] |
Magré J, Delépine M, Khallouf E, Gedde-Dahl T, Van Maldergem L, Sobel E, Papp J, Meier M, Mégarbané A, Bachy A, Verloes A, d'Abronzo FH, Seemanova E, Assan R, Baudic N, Bourut C, Czernichow P, Huet F, Grigorescu F, de Kerdanet M, Lacombe D, Labrune P, Lanza M, Loret H, Matsuda F, Navarro J, Nivelon-Chevalier A, Polak M, Robert JJ, Tric P, Tubiana-Rufi N, Vigouroux C, Weissenbach J, Savasta S, Maassen JA, Trygstad O, Bogalho P, Freitas P, Medina JL, Bonnicci F, Joffe BI, Loyson G, Panz VR, Raal FJ, O'Rahilly S, Stephenson T, Kahn CR, Lathrop M, Capeau J, BSCL Working Group. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet, 2001, 28(4): 365-370.
pmid: 11479539 |
[12] |
Szymanski KM, Binns D, Bartz R, Grishin NV, Li WP, Agarwal AK, Garg A, Anderson RGW, Goodman JM. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA, 2007, 104(52): 20890-20895.
doi: 10.1073/pnas.0704154104 |
[13] |
Fei WH, Shui GH, Gaeta B, Du XM, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG, Yang HY. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol, 2008, 180(3): 473-482.
doi: 10.1083/jcb.200711136 pmid: 18250201 |
[14] |
Salo VT, Belevich I, Li SQ, Karhinen L, Vihinen H, Vigouroux C, Magré J, Thiele C, Hölttä-Vuori M, Jokitalo E, Ikonen E. Seipin regulates ER-lipid droplet contacts and cargo delivery. EMBO J, 2016, 35(24): 2699-2716.
pmid: 27879284 |
[15] | Wang HJ, Becuwe M, Housden BE, Chitraju C, Porras AJ, Graham MM, Liu XN, Thiam AR, Savage DB, Agarwal AK, Garg A, Olarte MJ, Lin QQ, Fröhlich F, Hannibal- Bach HK, Upadhyayula S, Perrimon N, Kirchhausen T, Ejsing CS, Walther TC, Farese RV. Seipin is required for converting nascent to mature lipid droplets. eLife, 2016, 5: e16582. |
[16] | BERARDINELLI W. An undiagnosed endocrinometabolic syndrome:report of 2 cases. J Clin Endocrinol Metab, 1954, 14(2): 193-204. |
[17] |
Magré J, Delépine M, Van Maldergem L, Robert JJ, Maassen JA, Meier M, Panz VR, Kim CA, Tubiana-Rufi N, Czernichow P, Seemanova E, Buchanan CR, Lacombe D, Vigouroux C, Lascols O, Kahn CR, Capeau J, Lathrop M. Prevalence of mutations in AGPAT2 among human lipodystrophies. Diabetes, 2003, 52(6): 1573-1578.
pmid: 12765973 |
[18] |
Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol, 2011, 12(11): 722-734.
doi: 10.1038/nrm3198 |
[19] |
Miranda DM, Wajchenberg BL, Calsolari MR, Aguiar MJ, Silva JMCL, Ribeiro MG, Fonseca C, Amaral D, Boson WL, Resende BA, De Marco L. Novel mutations of the BSCL2 and AGPAT2 genes in 10 families with Berardinelli-Seip congenital generalized lipodystrophy syndrome. Clin Endocrinol (Oxf), 2009, 71(4): 512-517.
doi: 10.1111/j.1365-2265.2009.03532.x |
[20] |
Qin YY, Zhang X, Xiang LQ, Shan QW, Li SD, Yan J, Lin FQ. A new compound heterozygous mutation of BSCL2 in a chinese zhuang ethnic family with congenital generalized lipodystrophy. Diabetes Metab Syndr Obes, 2019, 12: 2583-2587.
doi: 10.2147/DMSO.S207293 |
[21] | Yang Y, Ma L, Sun JJ, Gong XH, Cai C, Hong WC. The neonatal onset diabetes mellitus of Chinese neonate with congenital generalized lipodystrophy 2:a case report. BMC Endocr Disord, 2022, 22(1): 83. |
[22] |
Wang MF, Cun ZK, Peng JC, Chen R, Li JW. Type2 congenital generalized lipodystrophy with a heterozygous missense NOTCH2 mutation. Eur J Clin Nutr, 2022, 76(7): 1041-1043.
doi: 10.1038/s41430-022-01072-y |
[23] |
Lu J, Chiang J, Iyer RR, Thompson E, Kaneski CR, Xu DS, Yang CZ, Chen M, Hodes RJ, Lonser RR, Brady RO, Zhuang ZP. Decreased glucocerebrosidase activity in Gaucher disease parallels quantitative enzyme loss due to abnormal interaction with TCP1 and c-Cbl. Proc Natl Acad Sci USA, 2010, 107(50): 21665-21670.
doi: 10.1073/pnas.1014376107 |
[24] |
Pagac M, Cooper DE, Qi YF, Lukmantara IE, Mak HY, Wu ZY, Tian Y, Liu ZH, Lei M, Du XM, Ferguson C, Kotevski D, Sadowski P, Chen WQ, Boroda S, Harris TE, Liu G, Parton RG, Huang X, Coleman RA, Yang HY. SEIPIN regulates lipid droplet expansion and adipocyte development by modulating the activity of glycerol-3- phosphate acyltransferase. Cell Rep, 2016, 17(6): 1546-1559.
doi: 10.1016/j.celrep.2016.10.037 |
[25] |
Pipalia NH, Cosner CC, Huang A, Chatterjee A, Bourbon P, Farley N, Helquist P, Wiest O, Maxfield FR. Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts. Proc Natl Acad Sci USA, 2011, 108(14): 5620-5625.
doi: 10.1073/pnas.1014890108 |
[26] |
Munkacsi AB, Chen FW, Brinkman MA, Higaki K, Gutiérrez GD, Chaudhari J, Layer JV, Tong A, Bard M, Boone C, Ioannou YA, Sturley SL. An “exacerbate- reverse” strategy in yeast identifies histone deacetylase inhibition as a correction for cholesterol and sphingolipid transport defects in human Niemann-Pick type C disease. J Biol Chem, 2011, 286(27): 23842-23851.
doi: 10.1074/jbc.M111.227645 pmid: 21489983 |
[27] |
Hutt DM, Herman D, Rodrigues APC, Noel S, Pilewski JM, Matteson J, Hoch B, Kellner W, Kelly JW, Schmidt A, Thomas PJ, Matsumura Y, Skach WR, Gentzsch M, Riordan JR, Sorscher EJ, Okiyoneda T, Yates JR, Lukacs GL, Frizzell RA, Manning G, Gottesfeld JM, Balch WE. Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat Chem Biol, 2010, 6(1): 25-33.
doi: 10.1038/nchembio.275 pmid: 19966789 |
[28] |
Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Görgün CZ, Hotamisligil GS. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science, 2006, 313(5790): 1137-1140.
doi: 10.1126/science.1128294 pmid: 16931765 |
[29] |
Jin J, Cao LF, Zhao ZH, Shen SX, Kiess W, Zhi DJ, Ye R, Cheng RQ, Chen L, Yang Y, Luo FH. Novel BSCL2 gene mutation E189X in Chinese congenital generalized lipodystrophy child with early onset diabetes mellitus. Eur J Endocrinol, 2007, 157(6): 783-787.
doi: 10.1530/EJE-07-0393 |
[30] |
Antuna-Puente B, Boutet E, Vigouroux C, Lascols O, Slama L, Caron-Debarle M, Khallouf E, Lévy-Marchal C, Capeau J, Bastard JP, Magré J. Higher adiponectin levels in patients with Berardinelli-Seip congenital lipodystrophy due to seipin as compared with 1-acylglycerol-3-phosphate- o-acyltransferase-2 deficiency. J Clin Endocrinol Metab, 2010, 95(3): 1463-1468.
doi: 10.1210/jc.2009-1824 pmid: 20097706 |
[31] |
Nishiyama A, Yagi M, Awano H, Okizuka Y, Maeda T, Yoshida S, Takeshima Y, Matsuo M. Two Japanese infants with congenital generalized lipodystrophy due to BSCL2 mutations. Pediatr Int, 2009, 51(6): 775-779.
doi: 10.1111/j.1442-200X.2009.02863.x pmid: 19438831 |
[32] |
Simha V, Garg A. Inherited lipodystrophies and hypertriglyceridemia. Curr Opin Lipidol, 2009, 20(4): 300-308.
doi: 10.1097/MOL.0b013e32832d4a33 pmid: 19494770 |
[33] |
Patni N, Garg A. Congenital generalized lipodystrophies— new insights into metabolic dysfunction. Nat Rev Endocrinol, 2015, 11(9): 522-534.
doi: 10.1038/nrendo.2015.123 |
[34] |
Musso C, Cochran E, Javor E, Young J, Depaoli AM, Gorden P. The long-term effect of recombinant methionyl human leptin therapy on hyperandrogenism and menstrual function in female and pituitary function in male and female hypoleptinemic lipodystrophic patients. Metabolism, 2005, 54(2): 255-263.
doi: 10.1016/j.metabol.2004.08.021 |
[35] |
Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, Wagner AJ, DePaoli AM, Reitman ML, Taylor SI, Gorden P, Garg A. Leptin-replacement therapy for lipodystrophy. N Engl J Med, 2002, 346(8): 570-578.
doi: 10.1056/NEJMoa012437 |
[36] |
Mulligan K, Khatami H, Schwarz JM, Sakkas GK, DePaoli AM, Tai VW, Wen MJ, Lee GA, Grunfeld C, Schambelan M. The effects of recombinant human leptin on visceral fat, dyslipidemia, and insulin resistance in patients with human immunodeficiency virus-associated lipoatrophy and hypoleptinemia. J Clin Endocrinol Metab, 2009, 94(4): 1137-1144.
doi: 10.1210/jc.2008-1588 pmid: 19174500 |
[37] |
Simha V, Subramanyam L, Szczepaniak L, Quittner C, Adams-Huet B, Snell P, Garg A. Comparison of efficacy and safety of leptin replacement therapy in moderately and severely hypoleptinemic patients with familial partial lipodystrophy of the Dunnigan variety. J Clin Endocrinol Metab, 2012, 97(3): 785-792.
doi: 10.1210/jc.2011-2229 pmid: 22170723 |
[38] |
Scroggins BT, Robzyk K, Wang DX, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D, Karnitz L, Rosen N, Neckers L. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell, 2007, 25(1): 151-159.
pmid: 17218278 |
[39] |
Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol, 2007, 25(1): 84-90.
pmid: 17211407 |
[40] |
Lu J, Yang CZ, Chen M, Ye DY, Lonser RR, Brady RO, Zhuang ZP. Histone deacetylase inhibitors prevent the degradation and restore the activity of glucocerebrosidase in Gaucher disease. Proc Natl Acad Sci USA, 2011, 108(52): 21200-21205.
doi: 10.1073/pnas.1119181109 |
[41] |
Pipalia NH, Subramanian K, Mao S, Ralph H, Hutt DM, Scott SM, Balch WE, Maxfield FR. Histone deacetylase inhibitors correct the cholesterol storage defect in most Niemann-Pick C1 mutant cells. J Lipid Res, 2017, 58(4): 695-708.
doi: 10.1194/jlr.M072140 pmid: 28193631 |
[42] |
Ramalingam SS, Parise RA, Ramanathan RK, Lagattuta TF, Musguire LA, Stoller RG, Potter DM, Argiris AE, Zwiebel JA, Egorin MJ, Belani CP. Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies. Clin Cancer Res, 2007, 13(12): 3605-3610.
pmid: 17510206 |
[1] | Huijie Yang, De Li, Huiling Bai, Ming Zhang, Jun Huang, Xiaoqing Yuan. Diagnosis, treatment and genetic analysis of a case of Alstrom syndrome caused by compoud heterozygous mutation of ALMS1 [J]. Hereditas(Beijing), 2022, 44(12): 1148-1157. |
[2] | Min Shen, Yong Gu, Changjiang Ying, Mei Zhang, Tao Yang, Yang Chen. Diagnosis, treatment and genetic analysis of a case with fibrocalculous pancreatic diabetes [J]. Hereditas(Beijing), 2022, 44(11): 1079-1086. |
[3] | Chengan Lv, Ruoran Wang, Zhuo-Xian Meng. Molecular mechanism of islet β-cell functional alternations during type 2 diabetes [J]. Hereditas(Beijing), 2022, 44(10): 840-852. |
[4] | Liwen Zhang, Meihua Ruan, Jialan Liu, Caihong He, Jianrong Yu. Progress on research and development in diabetes mellitus [J]. Hereditas(Beijing), 2022, 44(10): 824-839. |
[5] | Zhiyang Zeng, Jiawei Lu, Xiya Cao, Xinyue Wang, Dali Li. A method for constructing GLP-1 overexpression intestinal organoids [J]. Hereditas(Beijing), 2021, 43(7): 694-703. |
[6] | Lan Cao, Zhiqiang Li, Yongyong Shi, Yun Liu. Telomere length and type 2 diabetes: Mendelian randomization study and polygenic risk score analysis [J]. Hereditas(Beijing), 2020, 42(9): 882-888. |
[7] | Yuzhuo Wang, Yiming Zhang, Xiaolian Dong, Xuecai Wang, Jianfu Zhu, Na Wang, Feng Jiang, Yue Chen, Qingwu Jiang, Chaowei Fu. Modification effects of T2DM-susceptible SNPs on the reduction of blood glucose in response to lifestyle interventions [J]. Hereditas(Beijing), 2020, 42(5): 483-492. |
[8] | Xin Huang,Yongqiang Chen,Guoliang Xu,Shuhong Peng. DNA methylation in adipose tissue and the development of diabetes and obesity [J]. Hereditas(Beijing), 2019, 41(2): 98-110. |
[9] | Guangdong Hu,Kexing Hao,Tao Huang,Weibin Zeng,Xinli Gu,Jing Wang. Exploration and characterization of a universal piggyBac transposon vector for efficient transgene studies in sheep [J]. Hereditas(Beijing), 2018, 40(8): 647-656. |
[10] | Cuili Zhong, Guoling Li, Jianxin Mo, Rong Quan, Haoqiang Wang, Zicong Li, Zhenfang Wu, Xianwei Zhang. Effects of parameters, plasmid dosages and topological structures on transfection efficiency of porcine fetal fibroblasts using different electroporators [J]. Hereditas(Beijing), 2017, 39(10): 930-938. |
[11] | Wei Wang, Yushuang Wang, Lanlan Huang, Zijian Jian, Xinhua Wang, Shouren Liu, Wenhui Pi. Increasing the efficiency of homologous recombination vector-mediated end joining repair by inhibition of Lig4 gene using siRNA in sheep embryo fibroblasts [J]. Hereditas(Beijing), 2016, 38(9): 831-839. |
[12] | Xian Gong, Chao Zhang, Aisa Yiliyasi, Ying Shi, Xuewei Yang, Aosiman Nuersimanguli, Yaqun Guan, Shuhua Xu. A comparative analysis of genetic diversity of candidate genes associated with type 2 diabetes in worldwide populations [J]. Hereditas(Beijing), 2016, 38(6): 543-559. |
[13] | Jihong Cao, Weiting Liao, Cheng Wo, Guorong Xu, Huanxin Xu, Pinglong Li, Ye Tao, Peng Wang, Jiari Lin, Lianrui Deng. Transcriptome screening and verification of genes related to metabolism affected by histone deacetylase inhibitors [J]. HEREDITAS(Beijing), 2015, 37(9): 918-925. |
[14] | Xin Liang, Bo Zhang, Ping Liu, Tujun Weng, Li Zhang, Longzhu He, Fangfei Li, Chen Qu, Ping Wang. A gain-of-function mutation in FGFR2 influences mandibular condylar development on mice [J]. HEREDITAS(Beijing), 2015, 37(6): 561-567. |
[15] | Ri Wu,Chao Ma,Xiaodan Li,Huikun Duan,Yanli Ji,Yu Wang,Pingzhe Jiang,Haisong Wang,Peipei Tu,Miao Li,Ganggang Ni,Baicheng Ma,Minggang Li. Construction of yeast strains expressing long-acting glucagon-like peptide-1 (GLP-1) and their therapeutic effects on type 2 diabetes mellitus mouse model [J]. HEREDITAS(Beijing), 2015, 37(2): 183-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号