[1] | Franks PW, Mccarthy MI . Exposing the exposures responsible for type 2 diabetes and obesity. Science, 2016,354(6308):69-73. [DOI] | [2] | Mello VDFD, Pulkkinen L, Lalli M, Kolehmainen M, Pihlajamaki J, Uusitupa M . DNA methylation in obesity and type 2 diabetes. Ann Med, 2014,46(3):103-113. [DOI] | [3] | Tang LL, Liu Q, Bu SZ, Xu LT, Wang QW, Mai YF, Duan SW . The effect of environmental factors and DNA methylation on type 2 diabetes mellitus. Hereditas (Beijing), 2013,35(10):1143-1152. | [3] | 汤琳琳, 刘琼, 步世忠, 徐雷艇, 王钦文, 麦一峰, 段世伟 . 2型糖尿病环境因素与DNA甲基化的研究进展. 遗传, 2013,35(10):1143-1152. [DOI] | [4] | Vague J . The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. The American Journal of Clinical Nutrition, 1956,4(1):20-34. [DOI] | [5] | Pi-Sunyer FX . The epidemiology of central fat distribution in relation to disease. Nutr Rev, 2004,62(s2):S120-S126. [DOI] | [6] | M?rin P, Andersson B, Ottosson M, Olbe L, Chowdhury B, Kvist H, Holm G, Sj?str?m L, Bj?rntorp P . The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism, 1992,41(11):1242-1248. [DOI] | [7] | Tatsukawa Y, Misumi M, Kim YM, Yamada M, Ohishi W, Fujiwara S, Nakanishi S, Yoneda M . Body composition and development of diabetes: a 15-year follow-up study in a Japanese population. Eur J Clin Nutr, 2018,72(3):374-380. [DOI] | [8] | Seale P, Kajimura S, Spiegelman BM . Transcriptional control of brown adipocyte development and physiological function—of mice and men. Genes Dev, 2009,23(7):788-797. [DOI] | [9] | Gastaldelli A, Gaggini M, Defronzo RA . Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the san antonio metabolism study. Diabetes, 2017,66(4):815-822. [DOI] | [10] | Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, Poulsen P, Ribel-Madsen R, Pedersen NL, Almgren P, Fadista J, R?nn T, Pedersen KB, Scheele C, Vaag A, Ling C . Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes, 2014,63(9):2962-2976. [DOI] | [11] | Guo S . Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol, 2014,220(2):T1-T23. [DOI] | [12] | Miki H, Yamauchi T, Suzuki R, Komeda K, Tsuchida A, Kubota N, Terauchi Y, Kamon J, Kaburagi Y, Matsui J, Akanuma Y, Nagai R, Kimura S, Tobe K, Kadowaki T . Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol Cell Biol, 2001,21(7):2521-2532. [DOI] | [13] | Oro |
[1] |
Lan Wang, Fan Zeng, Rongfeng Huang, Shu Lin, Zhihui Zhang, Min-Dian Li.
Adipocyte reconstitution of Npy4r gene in Npy4r silenced mice promotes diet-induced obesity
[J]. Hereditas(Beijing), 2023, 45(2): 144-155.
|
[2] |
Mengxuan Xu, Ming Zhou.
Advances of RNA polymerase IV in controlling DNA methylation and development in plants
[J]. Hereditas(Beijing), 2022, 44(7): 567-580.
|
[3] |
Huijie Yang, De Li, Huiling Bai, Ming Zhang, Jun Huang, Xiaoqing Yuan.
Diagnosis, treatment and genetic analysis of a case of Alstrom syndrome caused by compoud heterozygous mutation of ALMS1
[J]. Hereditas(Beijing), 2022, 44(12): 1148-1157.
|
[4] |
Min Shen, Yong Gu, Changjiang Ying, Mei Zhang, Tao Yang, Yang Chen.
Diagnosis, treatment and genetic analysis of a case with fibrocalculous pancreatic diabetes
[J]. Hereditas(Beijing), 2022, 44(11): 1079-1086.
|
[5] |
Fan Zeng, Lan Wang, Xiaoqin Wan, Rongfeng Huang, Zhihui Zhang, Min-Dian Li.
Targeting leptin-positive adipocytes by expressing the Cre recombinase transgene under the endogenous leptin gene
[J]. Hereditas(Beijing), 2022, 44(10): 950-957.
|
[6] |
Jingya Ye, Aijie Huang, Zhenzhen Fu, Yingyun Gong, Hongyuan Yang, Hongwen Zhou.
A study of congenital generalized lipodystrophy (CGL) caused by BSCL2 gene mutation
[J]. Hereditas(Beijing), 2022, 44(10): 926-936.
|
[7] |
Chengan Lv, Ruoran Wang, Zhuo-Xian Meng.
Molecular mechanism of islet β-cell functional alternations during type 2 diabetes
[J]. Hereditas(Beijing), 2022, 44(10): 840-852.
|
[8] |
Liwen Zhang, Meihua Ruan, Jialan Liu, Caihong He, Jianrong Yu.
Progress on research and development in diabetes mellitus
[J]. Hereditas(Beijing), 2022, 44(10): 824-839.
|
[9] |
Qingwen Zhao, Dongning Pan.
Progress on the epigenetic regulation of adipose tissue thermogenesis
[J]. Hereditas(Beijing), 2022, 44(10): 867-880.
|
[10] |
Wang Ya'nan, Tao Xu, Wanpeng Wang, Qingzhu Zhang, Xie Li'nan.
Role of epigenetic modifications in the development of crops essential traits
[J]. Hereditas(Beijing), 2021, 43(9): 858-879.
|
[11] |
Zhiyang Zeng, Jiawei Lu, Xiya Cao, Xinyue Wang, Dali Li.
A method for constructing GLP-1 overexpression intestinal organoids
[J]. Hereditas(Beijing), 2021, 43(7): 694-703.
|
[12] |
Xiangqian Zhang, Nan Li, Xinming Xie.
Design and exploration of epigenetic comprehensive experiments
[J]. Hereditas(Beijing), 2021, 43(12): 1179-1187.
|
[13] |
Xinyue Wang, Liang Li, Qiuhui Duan, Dali Li, Jinlian Chen.
Effect of Uhrf1 on intestinal development
[J]. Hereditas(Beijing), 2021, 43(1): 84-93.
|
[14] |
Lan Cao, Zhiqiang Li, Yongyong Shi, Yun Liu.
Telomere length and type 2 diabetes: Mendelian randomization study and polygenic risk score analysis
[J]. Hereditas(Beijing), 2020, 42(9): 882-888.
|
[15] |
Yuzhuo Wang, Yiming Zhang, Xiaolian Dong, Xuecai Wang, Jianfu Zhu, Na Wang, Feng Jiang, Yue Chen, Qingwu Jiang, Chaowei Fu.
Modification effects of T2DM-susceptible SNPs on the reduction of blood glucose in response to lifestyle interventions
[J]. Hereditas(Beijing), 2020, 42(5): 483-492.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|