Hereditas(Beijing) ›› 2024, Vol. 46 ›› Issue (1): 3-17.doi: 10.16288/j.yczz.23-300
• Invited Review • Previous Articles Next Articles
Received:
2023-12-01
Revised:
2023-12-29
Online:
2024-01-20
Published:
2024-01-01
Contact:
Hong Zhao,Yongbiao Xue
E-mail:zhhong@genetics.ac.cn;ybxue@genetics.ac.cn
Supported by:
Hong Zhao, Yongbiao Xue. Molecular and evolutionary mechanisms of self-incompatibility in angiosperms[J]. Hereditas(Beijing), 2024, 46(1): 3-17.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | de Nettancourt D. Incompatibility and incongruity in wild and cultivated plants. Berlin: Springer 2001. |
[2] | Franklin-Tong VE. Self-incompatibility in flowering plants. Berlin: Springer, 2008. |
[3] |
Takayama S, Isogai A. Self-incompatibility in plants. Annu Rev Plant Biol, 2005, 56: 467-489.
pmid: 15862104 |
[4] |
Zhang YJ, Zhao ZH, Xue YB. Roles of proteolysis in plant self-incompatibility. Annu Rev Plant Biol, 2009, 60: 21-42.
doi: 10.1146/annurev.arplant.043008.092108 pmid: 19575579 |
[5] |
Fujii S, Kubo K, Takayama S. Non-self- and self-recognition models in plant self-incompatibility. Nat Plants, 2016, 2(9): 16130.
doi: 10.1038/nplants.2016.130 pmid: 27595657 |
[6] |
Bedinger PA, Broz AK, Tovar-Mendez A, McClure B. Pollen-pistil interactions and their role in mate selection. Plant Physiol, 2017, 173(1): 79-90.
doi: 10.1104/pp.16.01286 pmid: 27899537 |
[7] |
Hayman D. The genetical control of incompatibility in Phalaris Coerulescens Desf. Aust J Biol Sci, 1956, 9(3): 321-331.
doi: 10.1071/BI9560321 |
[8] |
Lundqvist A. Self-incompatibility in rye. Hereditas, 1954, 40(3-4): 278-294.
doi: 10.1111/j.1601-5223.1954.tb02973.x |
[9] |
Yang B, Thorogood D, Armstead I, Barth S. How far are we from unravelling self-incompatibility in grasses? New Phytol, 2008, 178(4): 740-753.
doi: 10.1111/j.1469-8137.2008.02421.x pmid: 18373516 |
[10] |
Bala M, Rehana S, Singh MP. Self-incompatibility: a targeted, unexplored pre-fertilization barrier in flower crops of Asteraceae. J Plant Res, 2023, 136(5): 587-612.
doi: 10.1007/s10265-023-01480-6 |
[11] |
Zhao H, Zhang Y, Zhang H, Song YZ, Zhao F, Zhang YE, Zhu SH, Zhang HK, Zhou ZD, Guo H, Li MM, Li JH, Gao Q, Han QQ, Huang HQ, Copsey L, Li Q, Chen H, Coen E, Zhang YJ, Xue YB. Origin, loss, and regain of self-incompatibility in angiosperms. Plant Cell, 2022, 34(1): 579-596.
doi: 10.1093/plcell/koab266 |
[12] | Anderson MA, Cornish EC, Mau SL, Williams EG, Hoggart R, Atkinson AA, Bonig I, Grego B, Simpson R, Roche PJ, Haley JD, Penschow J, Niall HD, Tregear GW, Coghlan JP, Crawford RJ, Clarke A. Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature, 1986, 321(6065): 38-44. |
[13] |
McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE. Style self- incompatibility gene products of Nicotiana alata are ribonucleases. Nature, 1989, 342(6252): 955-957.
doi: 10.1038/342955a0 |
[14] |
Lai Z, Ma WS, Han B, Liang LZ, Zhang YS, Hong GF, Xue YB. An F-box gene linked to the self- incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol, 2002, 50(1): 29-42.
doi: 10.1023/A:1016050018779 |
[15] |
Sijacic P, Wang X, Skirpan AL, Wang Y, Dowd PE, McCubbin AG, Huang SS, Kao TH. Identification of the pollen determinant of S-RNase-mediated self- incompatibility. Nature, 2004, 429(6989): 302-305.
doi: 10.1038/nature02523 |
[16] |
Qiao H, Wang F, Zhao L, Zhou JL, Lai Z, Zhang YS, Robbins TP, Xue YB. The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self- incompatibility. Plant Cell, 2004, 16(9): 2307-2322.
doi: 10.1105/tpc.104.024919 |
[17] |
Liang M, Yang W, Su SY, Fu LL, Yi HL, Chen CW, Deng XX, Chai LJ. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of Citrus. Mol Genet Genomics, 2017, 292(2): 325-341.
doi: 10.1007/s00438-016-1279-8 pmid: 27933381 |
[18] |
Schopfer CR, Nasrallah ME, Nasrallah JB. The male determinant of self-incompatibility in Brassica. Science, 1999, 286(5445): 1697-1700.
pmid: 10576728 |
[19] |
Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature, 2000, 403(6772): 913-916.
doi: 10.1038/35002628 |
[20] |
Foote HC, Ride JP, Franklin-Tong VE, Walker EA, Lawrence MJ, Franklin FC. Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proc Natl Acad Sci USA, 1994, 91(6): 2265-2269.
pmid: 8134385 |
[21] |
Wheeler MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS, Osman K, Vatovec S, Harper A, Franklin FCH, Franklin-Tong VE. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature, 2009, 459(7249): 992-995.
doi: 10.1038/nature08027 |
[22] |
Li J, Cocker JM, Wright J, Webster MA, McMullan M, Dyer S, Swarbreck D, Caccamo M, Oosterhout CV, Gilmartin PM. Genetic architecture and evolution of the S locus supergene in Primula vulgaris. Nat Plants, 2016, 2(12): 16188.
doi: 10.1038/nplants.2016.188 |
[23] |
Shore JS, Hamam HJ, Chafe PDJ, Labonne JDJ, Henning PM, McCubbin AG. The long and short of the S-locus in Turnera (Passifloraceae). New Phytol, 2019, 224(3): 1316-1329.
doi: 10.1111/nph.15970 pmid: 31144315 |
[24] |
Lian XP, Zhang SL, Huang GF, Huang LY, Zhang J, Hu FY. Confirmation of a gametophytic self-incompatibility in Oryza longistaminata. Front Plant Sci, 2021, 12: 576340.
doi: 10.3389/fpls.2021.576340 |
[25] |
Kakeda K, Ibuki T, Suzuki J, Tadano H, Kurita Y, Hanai Y, Kowyama Y. Molecular and genetic characterization of the S locus in Hordeum bulbosum L., a wild self-incompatible species related to cultivated barley. Mol Genet Genomics, 2008, 280(6): 509-519.
doi: 10.1007/s00438-008-0383-9 |
[26] |
Shinozuka H, Cogan NOI, Smith KF, Spangenberg GC, Forster JW. Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol, 2010, 72(3): 343-355.
doi: 10.1007/s11103-009-9574-y pmid: 19943086 |
[27] |
Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang BC, Studer B. A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Mol Biol Evol, 2016, 33(4): 870-884.
doi: 10.1093/molbev/msv335 pmid: 26659250 |
[28] |
Rohner M, Manzanares C, Yates S, Thorogood D, Copetti D, Lübberstedt T, Asp T, Studer B. Fine-mapping and comparative genomic analysis reveal the gene composition at the S and Z self-incompatibility loci in grasses. Mol Biol Evol, 2023, 40(1): msac259.
doi: 10.1093/molbev/msac259 |
[29] | Herridge R, McCourt T, Jacobs JME, Mace P, Brownfield L, Macknight R. Identification of the genes at S and Z reveals the molecular basis and evolution of grass self-incompatibility. Front Plant Sci, 2022, 22: 1011299. |
[30] |
Chen JQ, Wang P, de Graaf BHJ, Zhang H, Jiao HJ, Tang C, Zhang S, Wu JY. Phosphatidic acid counteracts S-RNase signaling in pollen by stabilizing the actin cytoskeleton. Plant Cell, 2018, 30(5): 1023-1039.
doi: 10.1105/tpc.18.00021 |
[31] |
Gu ZY, Meng D, Yang Q, Yuan H, Wang AD, Li W, Chen QJ, Zhang Y, Wang DM, Li TZ. A CBL gene, MdCBL5, controls the calcium signal and influences pollen tube growth in apple. Tree Genet Genomes, 2015, 11: 27.
doi: 10.1007/s11295-015-0853-2 |
[32] |
Mcclure BA, Gray JE, Anderson MA, Clarke AE. Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature, 1990, 347: 757-760.
doi: 10.1038/347757a0 |
[33] |
Qu HY, Guan YQ, Wang YZ, Zhang SL. PLC-mediated signaling pathway in pollen tubes regulates the gametophytic self-incompatibility of Pyrus species. Front Plant Sci, 2017, 8: 1164.
doi: 10.3389/fpls.2017.01164 |
[34] |
Yang Q, Meng D, Gu ZY, Li W, Chen QJ, Li Y, Yuan H, Yu J, Liu CS, Li TZ. Apple S-RNase interacts with an actin-binding protein, MdMVG, to reduce pollen tube growth by inhibiting its actin-severing activity at the early stage of self-pollination induction. Plant J, 2018, 95(1): 41-56.
doi: 10.1111/tpj.2018.95.issue-1 |
[35] | Tian HY, Zhang HK, Huang HQ, Zhang YE, Xue YB. Phase separation of S-RNase promotes self- incompatibility in Petunia hybrida. J Integr Plant Biol, 2023. |
[36] |
Oxley D, Munro SL, Craik DJ, Bacic A.Structure of N-glycans on the S3- and S6-allele stylar self- incompatibility ribonucleases of Nicotiana alata. Glycobiology, 1996, 6(6): 611-618.
pmid: 8922956 |
[37] |
Qi X, Luu DT, Yang Q, Maës O, Matton DP, Morse D, Cappadocia M. Genotype-dependent differences in S12-RNase expression lead to sporadic self-compatibility. Plant Mol Biol, 2001, 45(3): 295-305.
pmid: 11292075 |
[38] |
Liu BL, Morse D, Cappadocia M. Glycosylation of S-RNases may influence pollen rejection thresholds in Solanum chacoense. J Exp Bot, 2008, 59(3): 545-552.
doi: 10.1093/jxb/erm339 pmid: 18267942 |
[39] |
Torres-Rodríguez MD, Cruz-Zamora Y, Juárez-Díaz JA, Mooney B, McClure BA, Cruz-García F. NaTrxh is an essential protein for pollen rejection in Nicotiana by increasing S-RNase activity. Plant J, 2020, 103(4): 1304-1317.
doi: 10.1111/tpj.v103.4 |
[40] |
Qiao H, Wang HY, Zhao L, Zhou JL, Huang J, Zhang YS, Xue YB.The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell, 2004, 16(3): 582-595.
doi: 10.1105/tpc.017673 |
[41] |
Huang J, Zhao L, Yang QY, Xue YB. AhSSK1, a novel SKP1-like protein that interacts with the S-locus F-box protein SLF. Plant J, 2006, 46(5): 780-793.
pmid: 16709194 |
[42] |
Zhao L, Huang J, Zhao ZH, Li Q, Sims TL, Xue YB. The skp1-like protein SSK1 is required for cross-pollen compatibility in S-RNase-based self-incompatibility. Plant J, 2010, 62(1): 52-63.
doi: 10.1111/j.1365-313X.2010.04123.x |
[43] |
Xu C, Li MF, Wu JK, Guo H, Li Q, Zhang YE, Chai JJ, Li TZ, Xue YB. Identification of a canonical SCF(SLF) complex involved in S-RNase-based self-incompatibility of Pyrus (Rosaceae). Plant Mol Biol, 2013, 81(3): 245-257.
doi: 10.1007/s11103-012-9995-x |
[44] |
Entani T, Kubo K, Isogai S, Fukao Y, Shirakawa M, Isogai A, Takayama S. Ubiquitin-proteasome-mediated degradation of S-RNase in a solanaceous cross- compatibility reaction. Plant J, 2014, 78(6): 1014-1021.
doi: 10.1111/tpj.2014.78.issue-6 |
[45] |
Lewis D. Competition and dominance of incompatibility alleles in diploid pollen. Heredity, 1947, 1: 85-108.
doi: 10.1038/hdy.1947.5 |
[46] |
Stout AB, Chandler C. Hereditary transmission of induced tetraploidy and compatibility in fertilization. Science, 1942, 96(2489): 257-258.
pmid: 17770529 |
[47] |
Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T. S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics, 2007, 175(4): 1869-1881.
doi: 10.1534/genetics.106.068858 |
[48] |
Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell, 2003, 15(3): 771-781.
doi: 10.1105/tpc.009290 pmid: 12615948 |
[49] |
Hua Z, Kao TH. Identification and characterization of components of a putative Petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility. Plant Cell, 2006, 18(10): 2531-2553.
doi: 10.1105/tpc.106.041061 |
[50] |
Kubo K, Entani T, Takara A, Wang N, Fields AM, Hua ZH, Toyoda M, Kawashima S, Ando T, Isogai A, Kao TH, Takayama S. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science, 2010, 330(6005): 796-799.
doi: 10.1126/science.1195243 |
[51] |
Ida K, Norioka S, Yamamoto M, Kumasaka T, Yamashita E, Newbigin E, Clarke AE, Sakiyama F, Sato M. The 1.55 Å resolution structure of Nicotiana alata SF11- RNase associated with gametophytic self-incompatibility. J Mol Biol, 2001, 314(1): 103-112.
pmid: 11724536 |
[52] |
Li JH, Zhang Y, Song YZ, Zhang H, Fan JB, Li Q, Zhang DF, Xue YB. Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida. Plant J, 2017, 89(1): 45-57.
doi: 10.1111/tpj.2017.89.issue-1 |
[53] |
Liu W, Fan JB, Li JH, Song YZ, Li Q, Zhang YE, Xue YB. SCF(SLF)-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida. Front Genet, 2014, 5: 228.
doi: 10.3389/fgene.2014.00228 pmid: 25101113 |
[54] |
Zhao H, Song YZ, Li JH, Zhang Y, Huang HQ, Li Q, Zhang YE, Xue YB. Primary restriction of S-RNase cytotoxicity by a stepwise ubiquitination and degradation pathway in Petunia hybrida. New Phytol, 2021, 231(3): 1249-1264.
doi: 10.1111/nph.17438 pmid: 33932295 |
[55] |
Cabrillac D, Cock JM, Dumas C, Gaude T. The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature, 2001, 410(6825): 220-223.
doi: 10.1038/35065626 |
[56] |
Takayama S, Shimosato H, Shiba H, Funato M, Che FS, Watanabe M, Iwano M, Isogai A. Direct ligand- receptor complex interaction controls Brassica self- incompatibility. Nature, 2001, 413(6855): 534-538.
doi: 10.1038/35097104 |
[57] |
Ma R, Han ZF, Hu ZH, Lin GZ, Gong XQ, Zhang HQ, Nasrallah JB, Chai J. Structural basis for specific self-incompatibility response in Brassica. Cell Res, 2016, 26(12): 1320-1329.
doi: 10.1038/cr.2016.129 pmid: 27824028 |
[58] |
Murase K, Moriwaki Y, Mori T, Liu X, Masaka C, Takada Y, Maesaki R, Mishima M, Fujii S, Hirano Y, Kawabe Z, Nagata K, Terada T, Suzuki G, Watanabe M, Shimizu K, Hakoshima T, Takayama S. Mechanism of self/nonself-discrimination in Brassica self-incompatibility. Nat Commun, 2020, 11(1): 4916.
doi: 10.1038/s41467-020-18698-w pmid: 33004803 |
[59] |
Stone SL, Anderson EM, Mullen RT, Goring DR. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15(4): 885-898.
doi: 10.1105/tpc.009845 |
[60] |
Gu T, Mazzurco M, Sulaman W, Matias DD, Goring DR. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci USA, 1998, 95(1): 382-387.
pmid: 9419384 |
[61] |
Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A, Takayama S. Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transduce self-incompatibility signaling in Brassica rapa. Plant Cell, 2007, 19(12): 3961-3973.
doi: 10.1105/tpc.106.049999 |
[62] |
Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, Chilelli A, Goring DR.Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol, 2008, 147(4): 2084-2095.
doi: 10.1104/pp.108.123380 pmid: 18552232 |
[63] |
Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 2009, 21(9): 2655-2671.
doi: 10.1105/tpc.109.069740 |
[64] |
Sankaranarayanan S, Jamshed M, Kumar A, Skori L, Scandola S, Wang T, Spiegel D, Samuel MA. Glyoxalase goes green: the expanding roles of glyoxalase in plants. Int J Mol Sci, 2017, 18(4): 898.
doi: 10.3390/ijms18040898 |
[65] |
Sankaranarayanan S, Jamshed M, Samuel MA. Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response. Nat Plants, 2015, 1: 15185.
doi: 10.1038/nplants.2015.185 pmid: 27251720 |
[66] |
Scandola S, Samuel MA. A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Curr Biol, 2019, 29(3): 506-512.e4.
doi: S0960-9822(18)31671-3 pmid: 30661797 |
[67] |
Zhang LL, Huang JB, Su SQ, Wei XC, Yang L, Zhao HH, Yu JQ, Wang J, Hui JY, Hao SY, Song SS, Cao YY, Wang MS, Zhang XW, Zhao YY, Wang ZY, Zeng WQ, Wu HM, Yuan YX, Zhang XS, Cheung AY, Duan QH. FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Curr Biol, 2021, 31(14): 3004-3016.e4.
doi: 10.1016/j.cub.2021.04.060 |
[68] |
Iwano M, Ito K, Fujii S, Kakita M, Asano-Shimosato H, Igarashi M, Kaothien-Nakayama P, Entani T, Kanatani A, Takehisa M, Tanaka M, Komatsu K, Shiba H, Nagai T, Miyawaki A, Isogai A, Takayama S. Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nat Plants, 2015, 1: 15128.
doi: 10.1038/nplants.2015.128 pmid: 27250681 |
[69] |
Wu JY, Wang S, Gu YC, Zhang SL, Publicover SJ, Franklin-Tong VE. Self-incompatibility in Papaver rhoeas activates nonspecific cation conductance permeable to Ca2+ and K+. Plant Physiol, 2011, 155(2): 963-973.
doi: 10.1104/pp.110.161927 |
[70] |
Wilkins KA, Poulter NS, Franklin-Tong VE. Taking one for the team: self-recognition and cell suicide in pollen. J Exp Bot, 2014, 65(5): 1331-1342.
doi: 10.1093/jxb/ert468 pmid: 24449385 |
[71] |
de Graaf BHJ, Rudd JJ, Wheeler MJ, Perry RM, Bell EM, Osman K, Franklin FCH, Franklin-Tong VE. Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Nature, 2006, 444(7118): 490-493.
doi: 10.1038/nature05311 |
[72] |
Li ST, Samaj J, Franklin-Tong VE. A mitogen-activated protein kinase signals to programmed cell death induced by self-incompatibility in Papaver pollen. Plant Physiol, 2007, 145(1): 236-245.
doi: 10.1104/pp.107.101741 |
[73] |
Thomas SG, Huang SJ, Li ST, Staiger C J, Franklin-Tong VE. Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol, 2006, 174(2): 221-229.
pmid: 16831890 |
[74] |
Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE. Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of Papaver. Plant Physiol, 2011, 156(1): 404-416.
doi: 10.1104/pp.110.167510 pmid: 21386034 |
[75] | Lewis D, Jones DA. The genetics of heterostyly. Berlin: Springer, 1992. |
[76] | Huu CN, Plaschil S, Himmelbach A, Kappel C, Lenhard M.Female self-incompatibility type in heterostylous Primula is determined by the brassinosteroid- inactivating cytochrome P450 CYP734A50. Curr Biol, 2022, 32(3): 671-676. |
[77] | Huu CN, Keller B, Conti E, Kappel C, Lenhard M. Supergene evolution via stepwise duplications and neofunctionalization of a floral-organ identity gene. Proc Natl Acad Sci USA, 2020, 117(37): 23148-23157. |
[78] |
Matzke CM, Hamam HJ, Henning PM, Dougherty K, Shore JS, Neff MM, McCubbin AG. Pistil mating type and morphology are mediated by the brassinosteroid inactivating activity of the S-locus gene BAHD in heterostylous Turnera species. Int J Mol Sci, 2021, 22(19): 10603.
doi: 10.3390/ijms221910603 |
[79] |
Gutiérrez-Valencia J, Fracassetti M, Berdan EL, Bunikis I, Soler L, Dainat J, Kutschera VE, Losvik A, Désamoré A, Hughes PM, Foroozani A, Laenen B, Pesquet E, Abdelaziz M, Pettersson OV, Nystedt B, Brennan AC, Arroyo J, Slotte T. Genomic analyses of the Linum distyly supergene reveal convergent evolution at the molecular level. Curr Biol, 2022, 32(20): 4360-4371.
doi: 10.1016/j.cub.2022.08.042 |
[80] |
Elleman CJ, Franklin-Tong VE, Dickinson HG. Pollination in species with dry stigmas: the nature of the early stigmatic response and the pathway taken by pollen tubes. New Phytol, 1992, 121(3): 413-424.
doi: 10.1111/j.1469-8137.1992.tb02941.x pmid: 33874153 |
[81] |
Gonthier L, Blassiau C, Mörchen M, Cadalen T, Poiret M, Hendriks T, Quillet MC. High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae). Theor Appl Genet, 2013, 126(8): 2103-2121.
doi: 10.1007/s00122-013-2122-9 pmid: 23689744 |
[82] |
Price JH, Raduski AR, Brandvain Y, Van Tassel DL, Smith KP. Development of first linkage map for Silphium integrifolium (Asteraceae) enables identification of sporophytic self-incompatibility locus. Heredity (Edinb), 2022, 128(5): 304-312.
doi: 10.1038/s41437-022-00530-4 |
[83] | Tabah DA, Mcinnis SM, Hiscock SJ. Members of the S-receptor kinase multigene family in Senecio squalidus L.(Asteraceae), a species with sporophytic self- incompatibility. Sex Plant Reprod, 2004, 17: 131-140. |
[84] | Wollenweber TE, van Deenen N, Roelfs KU, Prüfer D, Gronover CS. Microscopic and transcriptomic analysis of pollination processes in self-incompatible Taraxacum koksaghyz. Plants (Basel), 2021, 10(3): 555. |
[85] |
Palumbo F, Draga S, Magon G, Gabelli G, Vannozzi A, Farinati S, Scariolo F, Lucchin M, Barcaccia G. MIK2 is a candidate gene of the S-locus for sporophytic self-incompatibility in chicory (Cichorium intybus, Asteraceae). Front Plant Sci, 2023, 14: 1204538.
doi: 10.3389/fpls.2023.1204538 |
[86] | Arroyo MTK. Breeding systems and pollination biology in Leguminosae. In: Polhill RM, Raven PH, Advances in legume systematics. Royal Botanic Gardens, Kew, eds. 1981, 723-769 |
[87] |
Casey NM, Milbourne D, Barth S, Febrer M, Jenkins G, Abberton MT, Jones C, Thorogood D. The genetic location of the self-incompatibility locus in white clover (Trifolium repens L.). Theor Appl Genet, 2010, 121(3): 567-576.
doi: 10.1007/s00122-010-1330-9 pmid: 20383486 |
[88] |
Aguiar B, Vieira J, Cunha AE, Vieira CP. No evidence for Fabaceae gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes. BMC Plant Biol, 2015, 15: 129.
doi: 10.1186/s12870-015-0497-2 pmid: 26032621 |
[89] |
Delaney LE, Igi B. The phylogenetic distribution and frequency of self-incompatibility in Fabaceae. Int J Plant Sci, 2021, 183(1): 30-42.
doi: 10.1086/717329 |
[90] |
Xue Y, Carpenter R, Dickinson HG, Coen ES. Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell, 1996, 8(5): 805-814.
pmid: 8672882 |
[91] |
Igic B, Kohn JR. Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci USA, 2001, 98(23): 13167-13171.
doi: 10.1073/pnas.231386798 pmid: 11698683 |
[92] |
Ramanauskas K, Igić B. The evolutionary history of plant T2/S-type ribonucleases. PeerJ, 2017, 5: e3790.
doi: 10.7717/peerj.3790 |
[93] |
Wricke G, Wehling P. Linkage between an incompatibility locus and a peroxidase isozyme locus (Prx 7) in rye. Theor Appl Genet, 1985, 71(2): 289-291.
doi: 10.1007/BF00252069 pmid: 24247396 |
[94] |
Gertz A, Wricke G. Linkage between the incompatibility locus Z and a β-glucosidase locus in rye. Plant Breeding, 1989, 102(3): 255-259.
doi: 10.1111/pbr.1989.102.issue-3 |
[95] |
Thorogood D, Kaiser WJ, Jones JG, Armstead IP. Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity (Edinb), 2002, 88(5): 385-390.
doi: 10.1038/sj.hdy.6800071 |
[96] |
Philipp U, Wehling P, Wricke G. A linkage map of rye. Theor Appl Genet, 1994, 88(2): 243-248.
doi: 10.1007/BF00225904 pmid: 24185933 |
[97] | Wang YA, Zhao H, Zhu SH, Zhang HK, Chen YY, Tao X, Tong WZ, Tian HY, Guan Y, Huang HQ, Han QQ, Cheng ZK, Zhang YJ, Yi CD, Zhang YE, Xue YB. Control of gametophytic self-incompatibility in the African wild rice. Research Square, 2022, doi: 10.21203/rs.3.rs-2121145/v1. |
[98] |
Chen SY, Jia JT, Cheng LQ, Zhao PC, Qi DM, Yang WG, Liu H, Dong XB, Li XX, Liu GS. Transcriptomic analysis reveals a comprehensive calcium- and phytohormone-dominated signaling response in Leymus chinensis self-incompatibility. Int J Mol Sci, 2019, 20(9): 2356.
doi: 10.3390/ijms20092356 |
[99] |
Sonneveld T, Tobutt KR, Vaughan SP, Robbins TP. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell, 2005, 17(1): 37-51.
pmid: 15598801 |
[100] |
Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AF, Tao R. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J, 2004, 39(4): 573-586.
doi: 10.1111/tpj.2004.39.issue-4 |
[101] |
Townsend CE. Further studies on the inheritance of a self-compatibility response to temperature and the segregation of S alleles in diploid Alsike clover. Crop Sci, 1971, 11(6): 860-863.
doi: 10.2135/cropsci1971.0011183X001100060028x |
[102] |
Endo S, Shinohara H, Matsubayashi Y, Fukuda H. A novel pollen-pistil interaction conferring high- temperature tolerance during reproduction via CLE45 signaling. Curr Biol, 2013, 23(17): 1670-1676.
doi: 10.1016/j.cub.2013.06.060 |
[103] |
Sears ER. Cytological phenomena connected with self-sterility in the flowering plants. Genetics, 1937, 22(1): 130-181.
doi: 10.1093/genetics/22.1.130 pmid: 17246827 |
[104] | Cabin RJ, Evans AS, Jennings DL, Marshall DL, Mitchell RJ, Sher AA. Using bud pollinations to avoid self-incompatibility: implications from studies of three mustards. Canad J Bot, 1996, 74(2): 285-289. |
[105] |
Lao XT, Suwabe K, Niikura S, Kakita M, Iwano M, Takayama S.Physiological and genetic analysis of CO2-induced breakdown of self-incompatibility in Brassica rapa. J Exp Bot, 2014, 65(4): 939-951.
doi: 10.1093/jxb/ert438 pmid: 24376255 |
[106] |
Hiscock SJ.Genetic control of self-incompatibility in Senecio squalidus L. (Asteraceae): a successful colonizing species. Heredity (Edinb), 2000, 85(Pt 1): 10-19.
doi: 10.1046/j.1365-2540.2000.00692.x |
[107] | Chen RD, Zhang QX. Primary study on the effect of GA on fruit setting rate in hybridization of Prunus mume. J Beijing For Univ, 2004, 26(S1): 57-63. |
[108] |
Sun CQ, Huang ZZ, Wang YL, Chen FD, Teng NJ, Fang WM, Liu ZL, Overcoming pre-fertilization barriers in the wide cross between Chrysanthemum grandiflorum (Ramat.) Kitamura and C. nankingense (Nakai) Tzvel. by using special pollination techniques. Euphytica, 2011, 178: 195-202.
doi: 10.1007/s10681-010-0297-6 |
[109] | Wehling P, Hackauf B, Wricke G. Phosphorylation of pollen proteins in relation to self-incompatibility in rye (Secale cereale L.). Sex Plant Reprod, 1994, 7(2): 67-75. |
[110] |
Klaas M., Yang BC, Bosch M, Thorogood D, Manzanares C, Armstead IP, Franklin FCH, Barth S. Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann Bot, 2011, 108(4): 677-685.
doi: 10.1093/aob/mcr186 |
[111] |
Ye MW, Peng Z, Tang D, Yang ZM, Li DW, Xu YM, Zhang CZ, Huang SW. Generation of self-compatible diploid potato by knockout of S-RNase. Nat Plants, 2018, 4(9): 651-654.
doi: 10.1038/s41477-018-0218-6 pmid: 30104651 |
[112] |
Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, Buell CR, Zarka D, Douches D.Overcoming self-incompatibility in diploid potato using CRISPR-Cas9. Front Plant Sci, 2019, 10: 376.
doi: 10.3389/fpls.2019.00376 pmid: 31001300 |
[113] |
Hosaka K, Hanneman RE. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor (Sli) gene. Euphytica, 1998, 99(3): 191-197.
doi: 10.1023/A:1018353613431 |
[114] |
Hosaka K, Hanneman RE. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor (Sli) gene on the potato genome using DNA markers. Euphytica, 1998, 103(2): 265-271.
doi: 10.1023/A:1018380725160 |
[115] |
Phumichai C, Mori M, Kobayashi A, Kamijima O, Hosaka K. Toward the development of highly homozygous diploid potato lines using the self-compatibility controlling Sli gene. Genome, 2005, 48(6): 977-984.
doi: 10.1139/g05-066 |
[116] |
Thorogood D, Armstead I P, Turner LB, Humphreys MO, Hayward MD. Identification and mode of action of self-compatibility loci in Lolium perenne L. Heredity (Edinb), 2005, 94(3): 356-363.
doi: 10.1038/sj.hdy.6800582 |
[117] |
Do Canto J, Studer B, Frei U, Lübberstedt T. Fine mapping a self-fertility locus in perennial ryegrass. Theor Appl Genet, 2018, 131(4): 817-827.
doi: 10.1007/s00122-017-3038-6 pmid: 29247258 |
[1] | Chaofan Xing, Mintao Wang, Lei Wang, Xin Shen. Progress on the mechanism of left-right asymmetrical patterning in bilaterians [J]. Hereditas(Beijing), 2023, 45(6): 488-500. |
[2] | Mingliang Jiang, Hong Lang, Xiaonan Li, Ye Zu, Jing Zhao, Shenling Peng, Zhen Liu, Zongxiang Zhan, Zhongyun Piao. Progress on plant orphan genes [J]. Hereditas(Beijing), 2022, 44(8): 682-694. |
[3] | Zequan Zheng, Qiaomei Fu, Yichen Liu. Exploration of adaptation, evolution and domestication of fermentation microorganisms by applying ancient DNA technology [J]. Hereditas(Beijing), 2022, 44(5): 414-423. |
[4] | Meng Fu, Yan Li. The origin and domestication history of domestic horses and the domestication characteristics of breeds [J]. Hereditas(Beijing), 2022, 44(3): 216-229. |
[5] | Shanshan Gao, Jinliang Li, Jiani Yang, Tong Zhou, Rui Liu, Xiaoping Wang, Li Yu. Progresses on adaptive evolution of gliding and flying ability in mammals [J]. Hereditas(Beijing), 2022, 44(1): 46-58. |
[6] | Shan Li, Yunzhi Huang, Xueying Liu, Xiangdong Fu. Genetic improvement of nitrogen use efficiency in crops [J]. Hereditas(Beijing), 2021, 43(7): 629-641. |
[7] | Hengxing Ba, Pengfei Hu, Chunyi Li. Progress on deer genome research [J]. Hereditas(Beijing), 2021, 43(4): 308-322. |
[8] | Menggang Lv, Aijia Liu, Qingwei Li, Peng Su. Progress on the origin, function and evolutionary mechanism of RHR transcription factor family [J]. Hereditas(Beijing), 2021, 43(3): 215-225. |
[9] |
Yuxing Zhang, Hong Wu, Li Yu.
|
[10] | Yigao Zhu, Jun Li, Yue Pang, Qingwei Li. Lamprey: an important animal model of evolution and disease research [J]. Hereditas(Beijing), 2020, 42(9): 847-857. |
[11] | Linan Zhao, Na Wang, Guoliang Yang, Xianbin Su, Zeguang Han. A method for reliable detection of genomic point mutations based on single-cell target-sequencing [J]. Hereditas(Beijing), 2020, 42(7): 703-712. |
[12] | Fengyue Hu, Kejian Wang. The STEME system: a novel tool for directed evolution in vivo [J]. Hereditas(Beijing), 2020, 42(3): 231-235. |
[13] | Lianchao Tang, Feng Gu. Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM [J]. Hereditas(Beijing), 2020, 42(3): 236-249. |
[14] | Zhichao Mei, Zhujun Wei, Jiahui Yu, Fengdan Ji, Linan Xie. Multi-omics association analysis revealed the role and mechanism of epialleles in environmental adaptive evolution of Arabidopsis thaliana [J]. Hereditas(Beijing), 2020, 42(3): 321-331. |
[15] | Wei Peng, Mengjie Feng, Hao Chen, Baoyu Han. Progress on genome sequencing of Dipteran insects [J]. Hereditas(Beijing), 2020, 42(11): 1093-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号