[1] | Freeman M, Gurdon JB. Regulatory principles of developmental signaling. Annu Rev Cell Dev Biol, 2002, 18: 515-539. | [2] | Kelc R, Trapecar M, Gradisnik L, Rupnik MS, Vogrin M. Platelet-rich plasma, especially when combined with a TGF-β inhibitor promotes proliferation, viability and myogenic differentiation of myoblasts. in vitro. PLoS One, 2015, 10(2): e0117302. | [3] | Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell, 2012, 149(4): 819-831. | [4] | Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(4): 358-369. | [5] | Lu LN, Sun K, Chen XN, Zhao Y, Wang LJ, Zhou L, Sun H, Wang HT. Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis. EMBO J, 2013, 32(19): 2575-2588. | [6] | Mueller AC, Cichewicz MA, Dey BK, Layer R, Reon BJ, Gagan JR, Dutta A. MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol Cell Biol, 2015, 35(3): 498-513. | [7] | Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev, 1998, 12(23): 3693-3702. | [8] | Pachnis V, Belayew A, Tilghman SM. Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci USA, 1984, 81(17): 5523-5527. | [9] | Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol, 1990, 10(1): 28-36. | [10] | Rachmilewitz J, Goshen R, Ariel I, Schneider T, De Groot N, Hochberg A. Parental imprinting of the human H19 gene. FEBS Lett, 1992, 309(1): 25-28. | [11] | Ripoche MA, Kress C, Poirier F, Dandolo L. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev, 1997, 11(12): 1596-1604. | [12] | Maher ER, Reik W. Beckwith-Wiedemann syndrome: imprinting in clusters revisited. J Clin Invest, 2000, 105(3): 247-252. | [13] | Demars J, Shmela ME, Rossignol S, Okabe J, Netchine I, Azzi S, Cabrol S, Le Caignec C, David A, Le Bouc Y, El-Osta Y, Gicquel C. Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Hum Mol Genet, 2010, 19(5): 803-814. | [14] |
[1] |
Shuang Zhang, Shanshan Guo, Ruwen Wang, Renyan Ma, Xianmin Wu, Peijie Chen, Ru Wang.
The roles of PARK gene family in myopathy
[J]. Hereditas(Beijing), 2022, 44(7): 545-555.
|
[2] |
Wandi Xiong, Kaiyu Xu, Lin Lu, Jiali Li.
Research progress on lncRNAs in Alzheimer’s disease
[J]. Hereditas(Beijing), 2022, 44(3): 189-197.
|
[3] |
Jinyan Yang, Xueqin Liu, Tianqi Wen, Yuhong Sun, Ying Yu.
Progress on lncRNA regulated disease resistance traits in domesticated animals
[J]. Hereditas(Beijing), 2021, 43(7): 654-664.
|
[4] |
Baosong Xing, Jing Wang, Junfeng Chen, Qiang Ma, Qiaoling Ren, Jiaqing Zhang, Hua Zhang, Liushuai Hua, Jiajie Sun, Hai Cao.
Analysis of differentially expressed circRNAs in longissimus muscle between castrated and intact male pigs
[J]. Hereditas(Beijing), 2021, 43(11): 1066-1077.
|
[5] |
Ting Zheng, Mailin Gan, Linyuan Shen, Lili Niu, Zongyi Guo, Jinyong Wang, Shunhua Zhang, Li Zhu.
circRNA on animal skeletal muscle development regulation
[J]. Hereditas(Beijing), 2020, 42(12): 1178-1191.
|
[6] |
Yanmin Gan,Jian Zhou,Rong Quan,Linjun Hong,Zicong Li,Enqin Zheng,Dewu Liu,Zhenfang Wu,Gengyuan Cai,Ting Gu.
Histone H3K27me3 in the regulation of skeletal muscle development
[J]. Hereditas(Beijing), 2019, 41(4): 285-292.
|
[7] |
Ziying Huang, Long Li, Qianqian Li, Xiangdong Liu, Changchun Li.
The effect of lncRNA TCONS_00815878 on differentiation of porcine skeletal muscle satellite cells
[J]. Hereditas(Beijing), 2019, 41(12): 1119-1128.
|
[8] |
Zhuang Zhaohui, Zhong Yong, Chen Yuechan, Zhang Zhiwei.
Research progress on the roles of Krüppel-like factors in muscle tissues
[J]. Hereditas(Beijing), 2018, 40(9): 733-748.
|
[9] |
Rui Zhou,Yixin Wang,Keren Long,Anan Jiang,Long Jin.
Regulatory mechanism for lncRNAs in skeletal muscle development and progress on its research in domestic animals
[J]. Hereditas(Beijing), 2018, 40(4): 292-304.
|
[10] |
Juntao Li,Wei Zhao,Dandan Li,Jing Feng,Gui Ba,Tianzeng Song,Hongping Zhang.
miR-101a targeting EZH2 promotes the differentiation of goat skeletal muscle satellite cells
[J]. Hereditas(Beijing), 2017, 39(9): 828-836.
|
[11] |
Jian Shi,Yanming Li,Xiangdong Fang.
The mechanism and clinical significance of long noncoding RNA-mediated gene expression via nuclear architecture
[J]. Hereditas(Beijing), 2017, 39(3): 189-199.
|
[12] |
Xinyun Li, Liangliang Fu, Huijun Cheng, Shuhong Zhao.
Advances on microRNA in regulating mammalian skeletal muscle development
[J]. Hereditas(Beijing), 2017, 39(11): 1046-1053.
|
[13] |
Chendong Liu, Lu Yang, Hongzhou Pu, Qiong Yang, Wenyao Huang, Xue Zhao, Li Zhu, Shunhua Zhang.
Epigenetics regulates gene expression patterns of skeletal muscle induced by physical exercise
[J]. Hereditas(Beijing), 2017, 39(10): 888-896.
|
[14] |
Lingyun Sun, Xingyu Li, Zhiwei Sun.
Progress of epigenetics and its therapeutic application in hepatocellular carcinoma
[J]. HEREDITAS(Beijing), 2015, 37(6): 517-527.
|
[15] |
Xiaoqing Huang,Dandan Li,Juan Wu.
Long non-coding RNAs in plants
[J]. HEREDITAS(Beijing), 2015, 37(4): 344-359.
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|