Hereditas(Beijing) ›› 2023, Vol. 45 ›› Issue (1): 42-51.doi: 10.16288/j.yczz.22-245
• Review • Previous Articles Next Articles
Zhichen Tian1,2,3(), Xiaojuan Yin1,2,3(
)
Received:
2022-07-19
Revised:
2022-09-05
Online:
2023-01-20
Published:
2022-09-22
Contact:
Yin Xiaojuan
E-mail:tianzhichen63@163.com;yyinxiaojuan@126.com
Supported by:
Zhichen Tian, Xiaojuan Yin. Advances in the application of induced pluripotent stem cells in pediatric diseases[J]. Hereditas(Beijing), 2023, 45(1): 42-51.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676. |
[2] | Bragança J, Lopes JA, Mendes-Silva L, Almeida Santos JM. Induced pluripotent stem cells, a giant leap for mankind therapeutic applications. World J Stem Cells, 2019, 11(7): 421-430. |
[3] | Durbin MD, Cadar AG, Chun YW, Hong CC. Investigating pediatric disorders with induced pluripotent stem cells. Pediatr Res, 2018, 84(4): 499-508. |
[4] | Yamanaka S. Pluripotent stem cell-based cell therapy- promise and challenges. Cell Stem Cell, 2020, 27(4): 523-531. |
[5] | Ray A, Joshi JM, Sundaravadivelu PK, Raina K, Lenka N, Kaveeshwar V, Thummer RP. An overview on promising somatic cell sources utilized for the efficient generation of induced pluripotent stem cells. Stem Cell Rev Rep, 2021, 17(6): 1954-1974. |
[6] | Wang ZQ, Zheng J, Pan RL, Chen Y. Current status and future prospects of patient-derived induced pluripotent stem cells. Hum Cell, 2021, 34(6): 1601-1616. |
[7] | Kumar S, Blangero J, Curran JE. Induced pluripotent stem cells in disease modeling and gene identification. Methods Mol Biol, 2018, 1706: 17-38. |
[8] | Cherkashova EA, Leonov GE, Namestnikova DD, Solov'eva AA, Gubskii IL, Bukharova TB, Gubskii LV, Goldstein DV, Yarygin KN. Methods of generation of induced pluripotent stem cells and their application for the therapy of central nervous system diseases. Bull Exp Biol Med, 2020, 168(4): 566-573. |
[9] | Cai CY, Meng FL, Rao L, Liu YY, Zhao XL. Induced pluripotent stem cell technology and its application in disease research. Hereditas(Beijing), 2020, 42(11): 1042-1061. |
蔡晨依, 孟飞龙, 饶琳, 刘云玥, 赵小立. 诱导多能干细胞技术及其在疾病研究中的应用. 遗传, 2020, 42(11): 1042-1061. | |
[10] | Woodard LE, Wilson MH. piggyBac-ing models and new therapeutic strategies. Trends Biotechnol, 2015, 33(9): 525-533. |
[11] | Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev, 2019, 99(1): 79-114. |
[12] | Steinle H, Weber M, Behring A, Mau-Holzmann U, Schlensak C, Wendel HP, Avci-Adali M. Generation of iPSCs by nonintegrative RNA-based reprogramming techniques: benefits of self-replicating RNA versus synthetic mRNA. Stem Cells Int, 2019, 2019: 7641767. |
[13] | Hou PP, Li YQ, Zhang X, Liu C, Guan JY, Li HG, Zhao T, Ye JQ, Yang WF, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng HK. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146): 651-654. |
[14] | Guan JY, Wang G, Wang JL, Zhang ZY, Fu Y, Cheng L, Meng GF, Lyu YL, Zhu JL, Li YQ, Wang YL, Liuyang SJ, Liu B, Yang ZR, He HJ, Zhong XX, Chen QJ, Zhang X, Sun SC, Lai WF, Shi Y, Liu LL, Wang LP, Li C, Lu SC, Deng HK. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature, 2022, 605(7909): 325-331. |
[15] | Hu YY, Yang YY, Tan PC, Zhang YX, Han MX, Yu JW, Zhang X, Jia ZR, Wang D, Li YQ, Ma TH, Liu K, Ding S. Induction of mouse totipotent stem cells by a defined chemical cocktail. Nature, 2022, Doi: 10.1038/s41586-022-04967-9. |
[16] | Cooney AL, Wambach JA, Sinn PL, McCray PB. Gene therapy potential for genetic disorders of surfactant dysfunction. Front Genome Ed, 2022, 3: 785829. |
[17] | Wambach JA, Yang P, Wegner DJ, Heins HB, Luke C, Li FH, White FV, Cole FS.Functional genomics of ABCA3 variants. Am J Respir Cell Mol Biol, 2020, 63(4): 436-443. |
[18] | Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, Na CL, Weaver TE, Vedaie M, Hurley K, Hinds A, Russo SJ, Kook S, Zacharias W, Ochs M, Traber K, Quinton LJ, Crane A, Davis BR, White FV, Wambach J, Whitsett JA, Cole FS, Morrisey EE, Guttentag SH, Beers MF, Kotton DN. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell, 2017, 21(4): 472-488.e10. |
[19] | Leibel SL, Winquist A, Tseu I, Wang JX, Luo DC, Shojaie S, Nathan N, Snyder E, Post M. Reversal of surfactant protein B deficiency in patient specific human induced pluripotent stem cell derived lung organoids by gene therapy. Sci Rep, 2019, 9(1): 13450. |
[20] | Alysandratos KD, Russo SJ, Petcherski A, Taddeo EP, Acín-Pérez R, Villacorta-Martin C, Jean JC, Mulugeta S, Rodriguez LR, Blum BC, Hekman RM, Hix OT, Minakin K, Vedaie M, Kook S, Tilston-Lunel AM, Varelas X, Wambach JA, Cole FS, Hamvas A, Young LR, Liesa M, Emili A, Guttentag SH, Shirihai OS, Beers MF, Kotton DN. Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Rep, 2021, 36(9): 109636. |
[21] | Wehbe Z, Ghanjati F, Flotho C. Induced pluripotent stem cells to model Juvenile Myelomonocytic Leukemia: new perspectives for preclinical research. Cells, 2021, 10(9): 2335. |
[22] | Tasian SK, Casas JA, Posocco D, Gandre-Babbe S, Gagne AL, Liang G, Loh ML, Weiss MJ, French DL, Chou ST. Mutation-specific signaling profiles and kinase inhibitor sensitivities of juvenile myelomonocytic leukemia revealed by induced pluripotent stem cells. Leukemia, 2019, 33(1): 181-190. |
[23] | Shigemura T, Matsuda K, Kurata T, Sakashita K, Okuno Y, Muramatsu H, Yue FM, Ebihara Y, Tsuji K, Sasaki K, Nakahata T, Nakazawa Y, Koike K. Essential role of PTPN11 mutation in enhanced haematopoietic differentiation potential of induced pluripotent stem cells of juvenile myelomonocytic leukaemia. Br J Haematol, 2019, 187(2): 163-173. |
[24] | Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci, 2020, 108: 103535. |
[25] | Sterlini B, Fruscione F, Baldassari S, Benfenati F, Zara F, Corradi A. Progress of induced pluripotent stem cell technologies to understand genetic epilepsy. Int J Mol Sci, 2020, 21(2): 482. |
[26] | Sun YS, Dolmetsch RE. Investigating the therapeutic mechanism of cannabidiol in a human induced pluripotent stem cell (iPSC)-based model of Dravet syndrome. Cold Spring Harb Symp Quant Biol, 2018, 83: 185-191. |
[27] | Lybrand ZR, Goswami S, Hsieh J. Stem cells: a path towards improved epilepsy therapies. Neuropharmacology, 2020, 168: 107781. |
[28] | Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, Karumbayaram S, Kumagai-Cresse C, Wang D, Zack JA, Kohn DB, Nakano A, Nelson SF, Miceli MC, Spencer MJ, Pyle AD. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell, 2016, 18(4): 533-540. |
[29] | Uchimura T, Asano T, Nakata T, Hotta A, Sakurai H. A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs. Cell Rep Med, 2021, 2(6): 100298. |
[30] | Mazaleyrat K, Badja C, Broucqsault N, Chevalier R, Laberthonnière C, Dion C, Baldasseroni L, El-Yazidi C, Thomas M, Bachelier R, Altié A, Nguyen K, Lévy N, Robin JD, Magdinier F. Multilineage differentiation for formation of innervated skeletal muscle fibers from healthy and diseased human pluripotent stem cells. Cells, 2020, 9(6): 1531. |
[31] | Yoshioka K, Ito A, Horie M, Ikeda K, Kataoka S, Sato K, Yoshigai T, Sakurai H, Hotta A, Kawabe Y, Kamihira M. Contractile activity of myotubes derived from human induced pluripotent stem cells: a model of Duchenne muscular dystrophy. Cells, 2021, 10(10): 2556. |
[32] | Sun CS, Choi IY, Rovira Gonzalez YI, Andersen P, Talbot CC, Iyer SR, Lovering RM, Wagner KR, Lee G. Duchenne muscular dystrophy hiPSC-derived myoblast drug screen identifies compounds that ameliorate disease in mdx mice. JCI Insight, 2020, 5(11): e134287. |
[33] | Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M, Kamao H, Sugita S, Onishi A, Ito T, Fujita K, Kawamata S, Go MJ, Shinohara C, Hata KI, Sawada M, Yamamoto M, Ohta S, Ohara Y, Yoshida K, Kuwahara J, Kitano Y, Amano N, Umekage M, Kitaoka F, Tanaka A, Okada C, Takasu N, Ogawa S, Yamanaka S, Takahashi M. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med, 2017, 376(11): 1038-1046. |
[34] | Song B, Cha Y, Ko S, Jeon J, Lee N, Seo H, Park KJ, Lee IH, Lopes C, Feitosa M, Luna MJ, Jung JH, Kim J, Hwang D, Cohen BM, Teicher MH, Leblanc P, Carter BS, Kordower JH, Bolshakov VY, Kong SW, Schweitzer JS, Kim KS. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson's disease models. J Clin Invest, 2020, 130(2): 904-920. |
[35] | Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, Mizuma H, Takara S, Takahashi R, Inoue H, Morita S, Yamamoto M, Okita K, Nakagawa M, Parmar M, Takahashi J. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature, 2017, 548(7669): 592-596. |
[36] | Doi D, Magotani H, Kikuchi T, Ikeda M, Hiramatsu S, Yoshida K, Amano N, Nomura M, Umekage M, Morizane A, Takahashi J. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson's disease. Nat Commun, 2020, 11(1): 3369. |
[37] | Schweitzer JS, Song B, Herrington TM, Park TY, Lee N, Ko S, Jeon J, Cha Y, Kim K, Li QZ, Henchcliffe C, Kaplitt M, Neff C, Rapalino O, Seo H, Lee IH, Kim J, Kim T, Petsko GA, Ritz J, Cohen BM, Kong SW, Leblanc P, Carter BS, Kim KS. Personalized iPSC-derived dopamine progenitor cells for parkinson's disease. N Engl J Med, 2020, 382(20): 1926-1932. |
[38] | Happle C, Lachmann N, Ackermann M, Mirenska A, Göhring G, Thomay K, Mucci A, Hetzel M, Glomb T, Suzuki T, Chalk C, Glage S, Dittrich-Breiholz O, Trapnell B, Moritz T, Hansen G. Pulmonary transplantation of human induced pluripotent stem cell-derived macrophages ameliorates pulmonary alveolar proteinosis. Am J Respir Crit Care Med, 2018, 198(3): 350-360. |
[39] | Kuhn A, Ackermann M, Mussolino C, Cathomen T, Lachmann N, Moritz T. TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis. Sci Rep, 2017, 7(1): 15195. |
[40] | Shafa M, Ionescu LI, Vadivel A, Collins JJP, Xu LQ, Zhong SM, Kang M, de Caen G, Daneshmand M, Shi J, Fu KZ, Qi A, Wang Y, Ellis J, Stanford WL, Thébaud B. Human induced pluripotent stem cell-derived lung progenitor and alveolar epithelial cells attenuate hyperoxia- induced lung injury. Cytotherapy, 2018, 20(1): 108-125. |
[41] | Miura Y, Sato M, Kuwahara T, Ebata T, Tabata Y, Sakurai H. Transplantation of human iPSC-derived muscle stem cells in the diaphragm of Duchenne muscular dystrophy model mice. PLoS One, 2022, 17(4): e0266391. |
[42] | Qin C, Guo Y, Yang DG, Yang ML, Du LJ, Li JJ. Induced pluripotent stem cell transplantation improves locomotor recovery in rat models of spinal cord injury: a systematic review and meta-analysis of randomized controlled trials. Cell Physiol Biochem, 2018, 47(5): 1835-1852. |
[43] | Kajikawa K, Imaizumi K, Shinozaki M, Shibata S, Shindo T, Kitagawa T, Shibata R, Kamata Y, Kojima K, Nagoshi N, Matsumoto M, Nakamura M, Okano H. Cell therapy for spinal cord injury by using human iPSC-derived region- specific neural progenitor cells. Mol Brain, 2020, 13(1): 120. |
[44] | Okubo T, Iwanami A, Kohyama J, Itakura G, Kawabata S, Nishiyama Y, Sugai K, Ozaki M, Iida T, Matsubayashi K, Matsumoto M, Nakamura M, Okano H. Pretreatment with a γ-secretase inhibitor prevents tumor-like overgrowth in human iPSC-derived transplants for spinal cord injury. Stem Cell Reports, 2016, 7(4): 649-663. |
[45] | Kojima K, Miyoshi H, Nagoshi N, Kohyama J, Itakura G, Kawabata S, Ozaki M, Iida T, Sugai K, Ito S, Fukuzawa R, Yasutake K, Renault-Mihara F, Shibata S, Matsumoto M, Nakamura M, Okano H. Selective ablation of tumorigenic cells following human induced pluripotent stem cell- derived neural stem/progenitor cell transplanttation in spinal cord injury. Stem Cells Transl Med, 2019, 8(3): 260-270. |
[46] | Ortuño-Costela MDC, Cerrada V, García-López M, Gallardo ME. The challenge of bringing iPSCs to the patient. Int J Mol Sci, 2019, 20(24): 6305. |
[47] | Sullivan S, Fairchild PJ, Marsh SGE, Müller CR, Turner ML, Song J, Turner D. Haplobanking induced pluripotent stem cells for clinical use. Stem Cell Res, 2020, 49: 102035. |
[48] | Morizane A, Kikuchi T, Hayashi T, Mizuma H, Takara S, Doi H, Mawatari A, Glasser MF, Shiina T, Ishigaki H, Itoh Y, Okita K, Yamasaki E, Doi D, Onoe H, Ogasawara K, Yamanaka S, Takahashi J.MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat Commun, 2017, 8(1): 385. |
[49] | Sugita S, Mandai M, Hirami Y, Takagi S, Maeda T, Fujihara M, Matsuzaki M, Yamamoto M, Iseki K, Hayashi N, Hono A, Fujino S, Koide N, Sakai N, Shibata Y, Terada M, Nishida M, Dohi H, Nomura M, Amano N, Sakaguchi H, Hara C, Maruyama K, Daimon T, Igeta M, Oda T, Shirono U, Tozaki M, Totani K, Sugiyama S, Nishida K, Kurimoto Y, Takahashi M. HLA-matched allogeneic iPS cells-derived RPE transplantation for macular degeneration. J Clin Med, 2020, 9(7): 2217. |
[50] | Xu HG, Wang B, Ono M, Kagita A, Fujii K, Sasakawa N, Ueda T, Gee P, Nishikawa M, Nomura M, Kitaoka F, Takahashi T, Okita K, Yoshida Y, Kaneko S, Hotta A. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell, 2019, 24(4): 566-578.e7. |
[51] | Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W, Reik W, Bertone P, Smith A. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell, 2014, 158(6): 1254-1269. |
[52] | Di Stefano B, Ueda M, Sabri S, Brumbaugh J, Huebner AJ, Sahakyan A, Clement K, Clowers KJ, Erickson AR, Shioda K, Gygi SP, Gu HC, Shioda T, Meissner A, Takashima Y, Plath K, Hochedlinger K. Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nat Methods, 2018, 15(9): 732-740. |
[1] | Haoliang Cui, Peihua Shi, Jinchun Gao, Xinbo Zhang, Shunran Zhao, Chenyu Tao. Progress on the study of nucleosome reorganization during cellular reprogramming [J]. Hereditas(Beijing), 2022, 44(3): 208-215. |
[2] | Chenyi Cai, Feilong Meng, Lin Rao, Yunyue Liu, Xiaoli Zhao. Induced pluripotent stem cell technology and its application in disease research [Retracted] [J]. Hereditas(Beijing), 2020, 42(11): 1042-1061. |
[3] | Zheng Ao, Xiang Chen, Zhenfang Wu, Zicong Li. Progress on abnormal development of cloned pigs generated by somatic cell transfer nuclear [J]. Hereditas(Beijing), 2020, 42(10): 993-1003. |
[4] | Xingwei Huang, Xiangrong Cheng, Nan Wang, Yuwei Zhang, Chen Liao, Lianhong Jin, Lei. Histone variant H3.3 and its functions in reprogramming [J]. Hereditas(Beijing), 2018, 40(3): 186-196. |
[5] | Lan Kang, Jiayu Chen, Shaorong Gao. Historical review of reprogramming and pluripotent stem cell research in China [J]. Hereditas(Beijing), 2018, 40(10): 825-840. |
[6] | Ling Zhang, Jianbo He. Progress of GATA6 in liver development [J]. Hereditas(Beijing), 2018, 40(1): 22-32. |
[7] | Shuang Li,Yuanyuan Yang,Yan Qiu,Yanhao Chen,Luwei Xu,Qiurong Ding. Applications of genome editing tools in precision medicine research [J]. Hereditas(Beijing), 2017, 39(3): 177-188. |
[8] | Zhenwei Jia. Mitochondria and pluripotent stem cells function [J]. HEREDITAS(Beijing), 2016, 38(7): 603-611. |
[9] | Zheng Ao, Dewu Liu, Gengyuan Cai, Zhenfang Wu, Zicong Li. Placental developmental defects in cloned mammalian animals [J]. HEREDITAS(Beijing), 2016, 38(5): 402-410. |
[10] | Yuda Wei, Shuang Li, Gaigai Liu, Yongxian Zhang, Qiurong Ding. Use of genome editing tools in human stem cell-based disease modeling and precision medicine [J]. HEREDITAS(Beijing), 2015, 37(10): 983-991. |
[11] | Caifang Ren, Hongyan Sun, Lizhong Wang, Guomin Zhang, Yixuan Fan, Guangyao Yan, Dan Wang, Feng Wang. Reprogramming mechanism and genetic stability of induced pluripotent stem cells (iPSCs) [J]. HEREDITAS(Beijing), 2014, 36(9): 879-887. |
[12] | Mingjun Cao, Huansheng Dong, Qingjie Pan, Hongjun Wang, Xiao Dong. Progress in early pancreas development and reprogramming of terminally differentiated cells into β cells [J]. HEREDITAS(Beijing), 2014, 36(6): 511-518. |
[13] | Hongwei Song, Tiezhu An, Shanhua Piao, Chunsheng Wang. Mammalian DNA methylation and its roles during the induced re-programming of somatic cells [J]. HEREDITAS(Beijing), 2014, 36(5): 431-438. |
[14] | Kexue Ma, Keshi Ma, Xingzi Xi. Research progress of epigenetic transgenerational phenotype [J]. HEREDITAS(Beijing), 2014, 36(5): 476-484. |
[15] | Ji Huili, Lu Shengsheng, Pan Dengke. Epigenetic reprogramming by somatic cell nuclear transfer: questions and potential solutions [J]. HEREDITAS(Beijing), 2014, 36(12): 1211-1218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号