Hereditas(Beijing) ›› 2023, Vol. 45 ›› Issue (6): 501-513.doi: 10.16288/j.yczz.23-021
• Review • Previous Articles Next Articles
Yifan Yu1,2(), Zhen OuYang2, Juan Guo1, Yujun Zhao1(
), Luqi Huang1,2(
)
Received:
2023-01-30
Revised:
2023-04-29
Online:
2023-06-20
Published:
2023-05-22
Contact:
Zhao Yujun,Huang Luqi
E-mail:18641603721@163.com;zhaoyj@nrc.ac.cn;huangluqi01@126.com
Supported by:
Yifan Yu, Zhen OuYang, Juan Guo, Yujun Zhao, Luqi Huang. Progress on regulatory elements of plant plastid genetic engineering[J]. Hereditas(Beijing), 2023, 45(6): 501-513.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Application of commonly used expression regulatory elements in plastid genetic engineering in recent five years"
研究内容 | 启动子 | 5′UTR | 3′UTR | 参考文献 |
---|---|---|---|---|
苦瓜(Momordica charantia)叶绿体转化载体的构建及其功能评价 | PpsbA | psbA | TpsbA | [ |
可育转质体拟南芥植物的高效培育 | Prrn/PpsbA/Pclp | rbcL/T7g10L | TpsbA/TatpA/Trps16/ TatpB/TrrnB | [ |
适用于拟南芥质体转化的载体及壮观霉素敏感性拟南芥品系的开发 | Prrn | atpB | TpsbA | [ |
莴苣叶绿体用于生产口服增强型疫苗抗原SARS-CoV-2刺突蛋白 | Prrn/PpsbA | psbA | TrbcL/TpsbA | [ |
RuBisCO的基因工程改良 | PrbcL | rbcL | Trps16/TrbcL | [ |
药用植物黄花蒿叶绿体遗传转化体系的建立 | Prrn/PpsbA | T7g10L/psbA | TpsbA/Trps16 | [ |
揭示质体编码的乙酰辅酶A羧化酶基因对代谢和发育功能的影响 | Prrn | TpsbA | [ | |
将复制微型染色体开发为质体基因工程的新工具 | Prrn/PclpP | T7g10L | TrrnB/TpsbA | [ |
Table 2
Novel inducible expression regulation system developed in the past five years"
研究内容 | 启动子 | 5′UTR | 3′UTR | 参考文献 |
---|---|---|---|---|
烟草新型IEE的开发 | Prrn | T7g10L | TpsbA/TrbcL/Trps16 | [92] |
莱茵衣藻新型IEE的开发 | PrbcL | T7g10L | TrbcL | [38] |
工程化PPR蛋白在新型质体诱导表达调控系统中的应用 | Prrn/PpsbA | atpB/atpH | TpsbA/TrbcL | [71] |
工程化RNA结合蛋白在新型非绿色质体诱导表达调控系统中的应用 | Prrn | atpB/atpH | TpsbA/TrbcL | [99] |
质体未加工多顺反子中ORF独立翻译合成系统的开发 | Prrn/PpsbA | clp/rbcL/atpB/T7g10L/ psbA/cry9Aa2/atpH | TpsbA | [106] |
核编码翻译增强子TDA1在莱茵衣藻叶绿体诱导表达调控系统中的应用 | Prrn | atpA | [72] | |
核糖开关质体诱导表达系统在虾青素生物合成中的应用 | T7/Prrn/PpsbA | T7g10L/psbA | TpsbA/TatpA/Trps16/ TrbcL/T7 T | [33] |
莱茵衣藻新型温度敏感表达调控系统的开发 | PpsaA | psaA | TrbcL | [105] |
莱茵衣藻维生素可逆性调控系统的开发 | PpsbD/PpsaA | psbD/psaA | TrbcL/TpsaD | [107] |
[1] |
Daniell H, McFadden BA. Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts. Proc Natl Acad Sci USA, 1987, 84(18): 6349-6353.
pmid: 3114748 |
[2] |
Daniell H. Molecular strategies for gene containment in transgenic crops. Nat Biotechnol, 2002, 20(6): 581-586.
doi: 10.1038/nbt0602-581 pmid: 12042861 |
[3] | Devine AL, Daniell H. Chloroplast genetic engineering for enhanced agronomic traits and expression of proteins for medical/industrial applications. Annu Plant Rev, 2018, 13(10): 283-320. |
[4] |
Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science, 1988, 240(4858): 1534-1538.
doi: 10.1126/science.2897716 pmid: 2897716 |
[5] |
Blowers AD, Bogorad L, Shark KB, Sanford JC. Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome. Plant Cell, 1989, 1(1): 123-132.
pmid: 2535460 |
[6] |
Svab Z, Hajdukiewicz P, Maliga P. Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA, 1990, 87(21): 8526-8530.
doi: 10.1073/pnas.87.21.8526 pmid: 11607112 |
[7] |
Svab Z, Maliga P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA, 1993, 90(3): 913-917.
doi: 10.1073/pnas.90.3.913 pmid: 8381537 |
[8] |
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol, 2016, 17(1): 134.
doi: 10.1186/s13059-016-1004-2 pmid: 27339192 |
[9] |
Oey M, Lohse M, Kreikemeyer B, Bock R. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J, 2009, 57(3): 436-445.
doi: 10.1111/tpj.2009.57.issue-3 |
[10] |
Daniell H. Transgene containment by maternal inheritance: effective or elusive? Proc Natl Acad Sci USA, 2007, 104(17): 6879-6880.
pmid: 17440039 |
[11] |
Inaba T. Bilateral communication between plastid and the nucleus: plastid protein import and plastid-to-nucleus retrograde signaling. Biosci Biotechnol Biochem, 2010, 74(3): 471-476.
doi: 10.1271/bbb.90842 |
[12] |
Inaba T, Ito-Inaba Y. Versatile roles of plastids in plant growth and development. Plant Cell Physiol, 2010, 51(11): 1847-1853.
doi: 10.1093/pcp/pcq147 pmid: 20889507 |
[13] |
Inaba T, Yazu F, Ito-Inaba Y, Kakizaki T, Nakayama K. Retrograde signaling pathway from plastid to nucleus. Int Rev Cell Mol Biol, 2011, 290: 167-204.
doi: 10.1016/B978-0-12-386037-8.00002-8 pmid: 21875565 |
[14] |
Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet, 2004, 5(2): 123-135.
doi: 10.1038/nrg1271 pmid: 14735123 |
[15] |
Bock R, Timmis JN. Reconstructing evolution: gene transfer from plastids to the nucleus. Bioessays, 2008, 30(6): 556-566.
doi: 10.1002/bies.20761 pmid: 18478535 |
[16] |
Sabater B. Evolution and function of the chloroplast. Current investigations and perspectives. Int J Mol Sci, 2018, 19(10): 3095.
doi: 10.3390/ijms19103095 |
[17] |
Tsai JY, Chu CC, Yeh YH, Chen LJ, Li HM, Hsiao CD.Structural characterizations of the chloroplast translocon protein Tic110. Plant J, 2013, 75(5): 847-857.
doi: 10.1111/tpj.2013.75.issue-5 |
[18] |
Hua ZY, Tian DM, Jiang C, Song SH, Chen ZY, Zhao YY, Jin Y, Huang LQ, Zhang Z, Yuan Y. Towards comprehensive integration and curation of chloroplast genomes. Plant Biotechnol J, 2022, 20(12): 2239-2241.
doi: 10.1111/pbi.13923 pmid: 36069606 |
[19] |
Ruf S, Forner J, Hasse C, Kroop X, Seeger S, Schollbach L, Schadach A, Bock R. High-efficiency generation of fertile transplastomic Arabidopsis plants. Nat Plants, 2019, 5(3): 282-289.
doi: 10.1038/s41477-019-0359-2 |
[20] |
Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS. Technical advance: stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J, 1999, 19(2): 209-216.
doi: 10.1046/j.1365-313X.1999.00508.x |
[21] |
Ruf S, Hermann M, Berger IJ, Carrer H, Bock R. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol, 2001, 19(9): 870-875.
doi: 10.1038/nbt0901-870 pmid: 11533648 |
[22] |
Dufourmantel N, Pelissier B, Garçon F, Peltier G, Ferullo JM, Tissot G. Generation of fertile transplastomic soybean. Plant Mol Biol, 2004, 55(4): 479-489.
pmid: 15604694 |
[23] |
Lelivelt CLC, McCabe MS, Newell CA, deSnoo CB, van Dun KMP, Birch-Machin I, Gray JC, Mills KHG, Nugent JM. Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol, 2005, 58(6): 763-774.
doi: 10.1007/s11103-005-7704-8 pmid: 16240172 |
[24] |
Kaushal C, Abdin MZ, Kumar S. Chloroplast genome transformation of medicinal plant Artemisia annua. Plant Biotechnol J, 2020, 18(11): 2155-2157.
doi: 10.1111/pbi.v18.11 |
[25] |
Verma D, Daniell H. Chloroplast vector systems for biotechnology applications. Plant Physiol, 2007, 145(4): 1129-1143.
doi: 10.1104/pp.107.106690 pmid: 18056863 |
[26] |
Scharff LB, Bock R. Synthetic biology in plastids. Plant J, 2014, 78(5): 783-798.
doi: 10.1111/tpj.2014.78.issue-5 |
[27] |
Boehm CR, Bock R. Recent advances and current challenges in synthetic biology of the plastid genetic system and metabolism. Plant Physiol, 2019, 179(3): 794-802.
doi: 10.1104/pp.18.00767 pmid: 30181342 |
[28] |
Fuentes P, Armarego-Marriott T, Bock R. Plastid transformation and its application in metabolic engineering. Curr Opin Biotechnol, 2018, 49: 10-15.
doi: 10.1016/j.copbio.2017.07.004 |
[29] |
Daniell H, Singh ND, Mason H, Streatfield SJ. Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci, 2009, 14(12): 669-679.
doi: 10.1016/j.tplants.2009.09.009 pmid: 19836291 |
[30] |
Bock R. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol, 2007, 18(2): 100-106.
doi: 10.1016/j.copbio.2006.12.001 |
[31] |
Martin-Avila E, Lim YL, Birch R, Dirk LMA, Buck S, Rhodes T, Sharwood RE, Kapralov MV, Whitney SM. Modifying plant photosynthesis and growth via simultaneous chloroplast transformation of Rubisco large and small subunits. Plant Cell, 2020, 32(9): 2898-2916.
doi: 10.1105/tpc.20.00288 |
[32] |
Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AMI, Maloney AP, Kavanagh TA, Gray JC, Bock R. High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J, 2008, 6(9): 897-913.
doi: 10.1111/j.1467-7652.2008.00356.x pmid: 19548344 |
[33] |
Agrawal S, Karcher D, Ruf S, Erban A, Hertle AP, Kopka J, Bock R. Riboswitch-mediated inducible expression of an astaxanthin biosynthetic operon in plastids. Plant Physiol, 2022, 188(1): 637-652.
doi: 10.1093/plphys/kiab428 |
[34] |
Bock R. Engineering chloroplasts for high-level constitutive or inducible transgene expression. Methods Mol Biol, 2021, 2317: 77-94.
doi: 10.1007/978-1-0716-1472-3_3 pmid: 34028763 |
[35] |
Scharff LB, Ehrnthaler M, Janowski M, Childs LH, Hasse C, Gremmels J, Ruf S, Zoschke R, Bock R. Shine- Dalgarno sequences play an essential role in the translation of plastid mRNAs in tobacco. Plant Cell, 2017, 29(12): 3085-3101.
doi: 10.1105/tpc.17.00524 |
[36] |
Zoschke R, Bock R. Chloroplast translation: structural and functional organization, operational control, and regulation. Plant Cell, 2018, 30(4): 745-770.
doi: 10.1105/tpc.18.00016 |
[37] |
Zhou F, Karcher D, Bock R. Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. Plant J, 2007, 52(5): 961-972.
doi: 10.1111/j.1365-313X.2007.03261.x pmid: 17825052 |
[38] |
Macedo-Osorio KS, Pérez-España VH, Garibay-Orijel C, Guzmán-Zapata D, Durán-Figueroa NV, Badillo-Corona JA. Intercistronic expression elements (IEE) from the chloroplast of Chlamydomonas reinhardtii can be used for the expression of foreign genes in synthetic operons. Plant Mol Biol, 2018, 98(4-5): 303-317.
doi: 10.1007/s11103-018-0776-z pmid: 30225747 |
[39] |
Sun T, Bentolila S, Hanson MR. The unexpected diversity of plant organelle RNA editosomes. Trends Plant Sci, 2016, 21(11): 962-973.
doi: S1360-1385(16)30090-5 pmid: 27491516 |
[40] |
Bock R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol, 2015, 66: 211-241.
doi: 10.1146/annurev-arplant-050213-040212 pmid: 25494465 |
[41] |
Narra M, Kota S, Velivela Y, Ellendula R, Allini VR, Abbagani S. Construction of chloroplast transformation vector and its functional evaluation in Momordica charantia L. 3 Biotech, 2018, 8(3): 140.
doi: 10.1007/s13205-018-1160-z |
[42] |
Yu QG, LaManna LM, Kelly ME, Lutz KA, Maliga P. New tools for engineering the Arabidopsis plastid genome. Plant Physiol, 2019, 181(2): 394-398.
doi: 10.1104/pp.19.00761 |
[43] |
Singh R, Lin SN, Nair SK, Shi Y, Daniell H. Oral booster vaccine antigen-Expression of full-length native SARS-CoV-2 spike protein in lettuce chloroplasts. Plant Biotechnol J, 2023, 21(5): 887-889.
doi: 10.1111/pbi.v21.5 |
[44] |
Caroca R, Howell KA, Malinova I, Burgos A, Tiller N, Pellizzer T, Annunziata MG, Hasse C, Ruf S, Karcher D, Bock R. Knockdown of the plastid-encoded acetyl- CoA carboxylase gene uncovers functions in metabolism and development. Plant Physiol, 2021, 185(3): 1091-1110.
doi: 10.1093/plphys/kiaa106 |
[45] |
Jakubiec A, Sarokina A, Choinard S, Vlad F, Malcuit I, Sorokin AP. Replicating minichromosomes as a new tool for plastid genome engineering. Nat Plants, 2021, 7(7): 932-941.
doi: 10.1038/s41477-021-00940-y pmid: 34155372 |
[46] |
Sugiura M. The chloroplast genome. Plant Mol Biol, 1992, 19(1): 149-168.
doi: 10.1007/BF00015612 pmid: 1600166 |
[47] |
Gruissem W, Tonkyn JC. Control mechanisms of plastid gene expression. Crit Rev Plant Sci, 1993, 12(1-2): 19-55.
doi: 10.1080/07352689309382355 |
[48] |
Weihe A, Börner T. Transcription and the architecture of promoters in chloroplasts. Trends Plant Sci, 1999, 4(5): 169-170.
pmid: 10322555 |
[49] | Liere K, Börner T. Transcription and transcriptional regulation in plastids. Cell Mol Biol Plastids, 2007, 19: 121-174. |
[50] |
Hajdukiewicz PT, Allison LA, Maliga P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J, 1997, 16(13): 4041-4048.
doi: 10.1093/emboj/16.13.4041 pmid: 9233813 |
[51] |
Zoubenko OV, Allison LA, Svab Z, Maliga P. Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res, 1994, 22(19): 3819-3824.
pmid: 7937099 |
[52] |
Daniell H, Rai V, Xiao YH. Cold chain and virus-free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes. Plant Biotechnol J, 2019, 17(7): 1357-1368.
doi: 10.1111/pbi.13060 pmid: 30575284 |
[53] |
Ivleva NB, Groat J, Staub JM, Stephens M. Expression of active subunit of nitrogenase via integration into plant organelle genome. PLoS One, 2016, 11(8): e0160951.
doi: 10.1371/journal.pone.0160951 |
[54] |
De Cosa B, Moar W, Lee SB, Miller M, Daniell H. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol, 2001, 19(1): 71-74.
doi: 10.1038/83559 pmid: 11135556 |
[55] |
Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, van Wijk KJ, Dougan G, Maliga P. Expression of tetanus toxin Fragment C in tobacco chloroplasts. Nucleic Acids Res, 2003, 31(4): 1174-1179.
doi: 10.1093/nar/gkg221 pmid: 12582236 |
[56] |
Ye GN, Hajdukiewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J, 2001, 25(3): 261-270.
doi: 10.1046/j.1365-313x.2001.00958.x pmid: 11208018 |
[57] |
Kuroda H, Maliga P. Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res, 2001, 29(4): 970-975.
doi: 10.1093/nar/29.4.970 pmid: 11160930 |
[58] |
Klein RR, Mullet JE. Control of gene expression during higher plant chloroplast biogenesis. Protein synthesis and transcript levels of psbA, psaA-psaB, and rbcL in dark-grown and illuminated barley seedlings. J Biol Chem, 1987, 262(9): 4341-4348.
pmid: 3558409 |
[59] |
Ruhlman T, Verma D, Samson N, Daniell H. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol, 2010, 152(4): 2088-2104.
doi: 10.1104/pp.109.152017 pmid: 20130101 |
[60] |
Boyhan D, Daniell H. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J, 2011, 9(5): 585-598
doi: 10.1111/j.1467-7652.2010.00582.x pmid: 21143365 |
[61] |
Sharwood RE. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. New Phytol, 2017, 213(2): 494-510.
doi: 10.1111/nph.14351 pmid: 27935049 |
[62] |
Kanevski I, Maliga P. Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci USA, 1994, 91(5): 1969-1973.
pmid: 8127916 |
[63] |
Whitney SM, Sharwood RE. Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. J Exp Bot, 2008, 59(7): 1909-1921.
doi: 10.1093/jxb/erm311 pmid: 18250079 |
[64] |
Sharwood RE, Ghannoum O, Kapralov MV, Gunn LH, Whitney SM. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nat Plants, 2016, 2: 16186.
doi: 10.1038/nplants.2016.186 pmid: 27892943 |
[65] |
McCarty NS, Graham AE, Studená L, Ledesma-Amaro R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun, 2020, 11(1): 1281.
doi: 10.1038/s41467-020-15053-x pmid: 32152313 |
[66] |
Bock R. Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol, 2014, 26: 7-13.
doi: 10.1016/j.copbio.2013.06.004 |
[67] |
Chen TY, Riaz S, Davey P, Zhao ZY, Sun YQ, Dykes GF, Zhou F, Hartwell J, Lawson T, Nixon PJ, Lin YJ, Liu LN. Producing fast and active Rubisco in tobacco to enhance photosynthesis. Plant Cell, 2023, 35(2): 795-807.
doi: 10.1093/plcell/koac348 |
[68] |
Herz S, Füssl M, Steiger S, Koop HU. Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Res, 2005, 14(6): 969-982.
pmid: 16315098 |
[69] |
Staub JM, Maliga P. Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J, 1994, 6(4): 547-553.
pmid: 7987413 |
[70] |
Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU. In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J, 1999, 19(3): 333-345.
doi: 10.1046/j.1365-313X.1999.00543.x |
[71] |
Rojas M, Yu QG, Williams-Carrier R, Maliga P, Barkan A. Engineered PPR proteins as inducible switches to activate the expression of chloroplast transgenes. Nat Plants, 2019, 5(5): 505-511.
doi: 10.1038/s41477-019-0412-1 pmid: 31036912 |
[72] |
Carrera-Pacheco SE, Hankamer B, Oey M. Light and heat-shock mediated TDA1 overexpression as a tool for controlled high-yield recombinant protein production in Chlamydomonas reinhardtii chloroplasts. Algal Res, 2020, 48: 101921.
doi: 10.1016/j.algal.2020.101921 |
[73] |
Fuentes P, Zhou F, Erban A, Karcher D, Kopka J, Bock R. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. eLife, 2016, 5: e13664.
doi: 10.7554/eLife.13664 |
[74] | Lu YH, Rijzaani H, Karcher D, Ruf S, Bock R. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci USA, 2013, 110(8): E623-E632. |
[75] |
Chebolu S, Daniell H. Stable expression of Gal/GalNAc lectin of Entamoeba histolytica in transgenic chloroplasts and immunogenicity in mice towards vaccine development for amoebiasis. Plant Biotechnol J, 2007, 5(2): 230-239.
doi: 10.1111/pbi.2007.5.issue-2 |
[76] |
Fernández-San Millán A, Ortigosa SM, Hervás-Stubbs S, Corral-Martínez P, Seguí-Simarro JM, Gaétan J, Coursaget P, Veramendi J. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol J, 2008, 6(5): 427-441.
doi: 10.1111/j.1467-7652.2008.00338.x pmid: 18422886 |
[77] |
Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, Shigeoka S. Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res, 2013, 22(2): 391-402.
doi: 10.1007/s11248-012-9656-5 pmid: 22990376 |
[78] |
Hasunuma T, Miyazawa SI, Yoshimura S, Shinzaki Y, Tomizawa KI, Shindo K, Choi SK, Misawa N, Miyake C. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J, 2008, 55(5): 857-868.
doi: 10.1111/tpj.2008.55.issue-5 |
[79] |
Drechsel O, Bock R. Selection of Shine-Dalgarno sequences in plastids. Nucleic Acids Res, 2011, 39(4): 1427-1438.
doi: 10.1093/nar/gkq978 pmid: 20965967 |
[80] |
Eberhard S, Drapier D, Wollman FA. Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J, 2002, 31(2): 149-160.
doi: 10.1046/j.1365-313x.2002.01340.x pmid: 12121445 |
[81] |
Kahlau S, Bock R. Plastid transcriptomics and translatomics of tomato fruit development and chloroplast- to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell, 2008, 20(4): 856-874.
doi: 10.1105/tpc.107.055202 |
[82] | Dinc E, Ramundo S, Croce R, Rochaix JD. Repressible chloroplast gene expression in Chlamydomonas: a new tool for the study of the photosynthetic apparatus. Biochim Biophys Acta, 2014, 1837(9): 1548-1552. |
[83] | Stern DB, Goldschmidt-Clermont M, Hanson MR. Chloroplast RNA metabolism. Annu Rev Plant Biol, 2010, 61: 125-155. |
[84] | Stern DB, Gruissem W. Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell, 1987, 51(6): 1145-1157. |
[85] | Monde RA, Greene JC, Stern DB. The sequence and secondary structure of the 3′-UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Mol Biol, 2000, 44(4): 529-542. |
[86] |
Tangphatsornruang S, Birch-Machin I, Newell CA, Gray JC. The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Mol Biol, 2011, 76(3-5): 385-396.
doi: 10.1007/s11103-010-9689-1 pmid: 20859755 |
[87] |
Cavaiuolo M, Kuras R, Wollman FA, Choquet Y, Vallon O. Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism. Nucleic Acids Res, 2017, 45(18): 10783-10799.
doi: 10.1093/nar/gkx668 pmid: 28985404 |
[88] |
Gallaher SD, Fitz-Gibbon ST, Strenkert D, Purvine SO, Pellegrini M, Merchant SS. High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates. Plant J, 2018, 93(3): 545-565.
doi: 10.1111/tpj.2018.93.issue-3 |
[89] |
Hirose T, Sugiura M. Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J, 1997, 16(22): 6804-6811.
pmid: 9362494 |
[90] |
Gnanasekaran T, Karcher D, Nielsen AZ, Martens HJ, Ruf S, Kroop X, Olsen CE, Motawie MS, Pribil M, Møller BL, Bock R, Jensen PE. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis. J Exp Bot, 2016, 67(8): 2495-2506.
doi: 10.1093/jxb/erw067 |
[91] |
Lu YH, Stegemann S, Agrawal S, Karcher D, Ruf S, Bock R. Horizontal transfer of a synthetic metabolic pathway between plant species. Curr Biol, 2017, 27(19): 3034-3041.e3.
doi: S0960-9822(17)31082-5 pmid: 28943084 |
[92] |
Legen J, Ruf S, Kroop X, Wang GW, Barkan A, Bock R, Schmitz-Linneweber C. Stabilization and translation of synthetic operon-derived mRNAs in chloroplasts by sequences representing PPR protein-binding sites. Plant J, 2018, 94(1): 8-21.
doi: 10.1111/tpj.2018.94.issue-1 |
[93] |
Lössl A, Eibl C, Harloff HJ, Jung C, Koop HU. Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep, 2003, 21(9): 891-899.
pmid: 12789507 |
[94] |
Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD. High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol, 2011, 155(4): 1690-1708.
doi: 10.1104/pp.110.169581 pmid: 21325565 |
[95] |
Hennig A, Bonfig K, Roitsch T, Warzecha H. Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis. FEBS J, 2007, 274(21): 5749-5758.
pmid: 17922845 |
[96] |
Scotti N, Sannino L, Idoine A, Hamman P, De Stradis A, Giorio P, Maréchal-Drouard L, Bock R, Cardi T. The HIV-1 Pr55 gag polyprotein binds to plastidial membranes and leads to severe impairment of chloroplast biogenesis and seedling lethality in transplastomic tobacco plants. Transgenic Res, 2015, 24(2): 319-331.
doi: 10.1007/s11248-014-9845-5 pmid: 25348481 |
[97] |
Magee AM, Coyne S, Murphy D, Horvath EM, Medgyesy P, Kavanagh TA. T7 RNA polymerase- directed expression of an antibody fragment transgene in plastids causes a semi-lethal pale-green seedling phenotype. Transgenic Res, 2004, 13(4): 325-337.
pmid: 15517992 |
[98] |
Petersen K, Bock R. High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol, 2011, 76(3-5): 311-321.
doi: 10.1007/s11103-011-9742-8 pmid: 21298465 |
[99] |
Yu QG, Barkan A, Maliga P. Engineered RNA-binding protein for transgene activation in non-green plastids. Nat Plants, 2019, 5(5): 486-490.
doi: 10.1038/s41477-019-0413-0 pmid: 31036913 |
[100] | Rochaix JD, Surzycki R, Ramundo S. Regulated chloroplast gene expression in Chlamydomonas. Methods Mol Biol, 2021, 2317: 305-318. |
[101] |
Greiner S, Sobanski J, Bock R. Why are most organelle genomes transmitted maternally? Bioessays, 2015, 37(1): 80-94.
doi: 10.1002/bies.201400110 pmid: 25302405 |
[102] | Bock R. Topics in current genetics. Cell Mol Biol Plastids, 2007, 29-63. |
[103] |
Giuliano G, Aquilani R, Dharmapuri S. Metabolic engineering of plant carotenoids. Trends Plant Sci, 2000, 5(10): 406-409.
pmid: 11044712 |
[104] |
Ralley L, Enfissi EMA, Misawa N, Schuch W, Bramley PM, Fraser PD. Metabolic engineering of ketocarotenoid formation in higher plants. Plant J, 2004, 39(4): 477-486.
doi: 10.1111/j.1365-313X.2004.02151.x pmid: 15272869 |
[105] |
Young R, Purton S. CITRIC: cold-inducible translational readthrough in the chloroplast of Chlamydomonas reinhardtii using a novel temperature-sensitive transfer RNA. Microb Cell Fact, 2018, 17(1): 186.
doi: 10.1186/s12934-018-1033-5 |
[106] |
Yu QG, Tungsuchat-Huang T, Verma K, Radler MR, Maliga P. Independent translation of ORFs in dicistronic operons, synthetic building blocks for polycistronic chloroplast gene expression. Plant J, 2020, 103(6): 2318-2329.
doi: 10.1111/tpj.v103.6 |
[107] | Ramundo S, Rochaix JD. Controlling expression of genes in the unicellular alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch. Methods Enzymol, 2015, 550: 267-281. |
[108] |
Rogalski M, Ruf S, Bock R. Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res, 2006, 34(16): 4537-4545.
doi: 10.1093/nar/gkl634 pmid: 16945948 |
[109] |
Staub JM, Maliga P. Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J, 1995, 7(5): 845-848.
pmid: 7773311 |
[110] |
Quesada-Vargas T, Ruiz ON, Daniell H. Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation. Plant Physiol, 2005, 138(3): 1746-1762.
doi: 10.1104/pp.105.063040 pmid: 15980187 |
[1] | Haidong Xu, Bolin Ning, Fang Mu, Hui Li, Ning Wang. Advances of functional consequences and regulation mechanisms of alternative cleavage and polyadenylation [J]. Hereditas(Beijing), 2021, 43(1): 4-15. |
[2] | Siyuan Liu, Guoqiang Yi, Zhonglin Tang, Bin Chen. Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements [J]. Hereditas(Beijing), 2020, 42(5): 435-443. |
[3] | Wanjin Xing. The establishment process of lac operon model and the analysis of several teaching problems [J]. Hereditas(Beijing), 2019, 41(6): 548-563. |
[4] | Yong He,An Luo,Liansheng Mu,Qiang Chen,Yan Zhang,Kai-Wun Yeh,Zhihong Tian. Advances of selectable marker genes in plastid genetic engineering [J]. Hereditas(Beijing), 2017, 39(9): 810-827. |
[5] | Jinhuan Li, Jia Shou, Qiang Wu. DNA fragment editing of genomes by CRISPR/Cas9 [J]. HEREDITAS(Beijing), 2015, 37(10): 992-291. |
[6] | Boyuan Sun, Jianbo Tu, Ying Li, Mingyao Yang. Role of genes and their cis-regulatory elements during animal morphological evolution [J]. HEREDITAS(Beijing), 2014, 36(6): 525-535. |
[7] | Zheng Xiang, Xianzhong Chen, Lihua Zhang, Wei Shen, You Fan, Maolin Lu. Development of a genetic transformation system for Candida tropicalis based on a reusable selection marker of URA3 gene [J]. HEREDITAS(Beijing), 2014, 36(10): 1053-1061. |
[8] | TANG Xiao-Li DENG Li-Bin LIN Jia-Ri ZHANG Wei-Long LIU Shuang-Mei WEI Yi MEI Pu-Ming WANG Yan LIANG Shang-Dong. Sterol regulatory element binding protein 1 and its target gene networks [J]. HEREDITAS, 2013, 35(5): 607-615. |
[9] | SUN Gao-Fei HE Shou-Pu DU Xiong-Ming. Analysis of cis-regulatory element distribution in gene promoters of Gossypium raimondii and Arabidopsis thaliana [J]. HEREDITAS, 2013, 35(10): 1226-1236. |
[10] | ZHANG Gao-Hua, WANG He, WANG Xu-Da, FENG Ming, LI Huai-Mei, LI Shu-Ying. Isolation of the promoter region of HAK gene from Aeluropus littoralis and functional analysis in rice [J]. HEREDITAS, 2012, 34(6): 742-748. |
[11] | XIE Xin-Guo, CHEN Meng, DU Li-Pu, XU Hui-Jun. Description and evaluation of transformation approaches used in wheat [J]. HEREDITAS, 2011, 33(5): 422-430. |
[12] | MA Wan-Qing, ZHANG Zhen, LIU Yue-Lin, WANG Hua-Zhong. Advances in mechanism of Escherichia coli carbon catabolite re-pression [J]. HEREDITAS, 2010, 32(6): 571-576. |
[13] | YIN Tao, LU Hong-Yu, ZHANG Shang-Long, LIU Jing-Mei, CHEN Da-Ming. Fruit-specific expression of sweet protein Brazzein in transgenic tomato plants [J]. HEREDITAS, 2009, 31(6): 663-667. |
[14] | NULL. Establishment of high efficiency genetic transformation system of maize mediated by Agrobacterium tumefaciens [J]. HEREDITAS, 2009, 31(11): 1158-1170. |
[15] | XU Ji-Ming, XIANG Tai-He. Construction of a novel vector harboring green fluorescence protein gene (gfp) and high expression of gfp in transformed roots of Petunia hybrida [J]. HEREDITAS, 2008, 30(8): 1069-1074. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号