Hereditas(Beijing) ›› 2024, Vol. 46 ›› Issue (3): 209-218.doi: 10.16288/j.yczz.23-248
• Review • Previous Articles Next Articles
Ao Zhang(), Shan Cen(
), Xiaoyu Li(
)
Received:
2023-11-10
Revised:
2023-12-28
Online:
2024-03-20
Published:
2024-01-19
Contact:
Shan Cen, Xiaoyu Li
E-mail:za1632649341@163.com;shancen@hotmail.com;xiaoyulik@hotmail.com
Supported by:
Ao Zhang, Shan Cen, Xiaoyu Li. N6-adenosine methylation and the regulatory mechanism on LINE-1[J]. Hereditas(Beijing), 2024, 46(3): 209-218.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, International Human Genome Sequencing Consortium.. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921.
doi: 10.1038/35057062 |
[2] |
Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res, 2008, 18(3): 343-358.
doi: 10.1101/gr.5558208 pmid: 18256243 |
[3] |
Goodier JL, Kazazian HH. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell, 2008, 135(1): 23-35.
doi: 10.1016/j.cell.2008.09.022 pmid: 18854152 |
[4] |
Babushok DV, Kazazian HH. Progress in understanding the biology of the human mutagen LINE-1. Hum Mutat, 2007, 28(6): 527-539.
doi: 10.1002/humu.20486 pmid: 17309057 |
[5] |
Zhang X, Zhang R, Yu JP. New understanding of the relevant role of LINE-1 retrotransposition in human disease and immune modulation. Front Cell Dev Biol, 2020, 8: 657.
doi: 10.3389/fcell.2020.00657 pmid: 32850797 |
[6] |
Jachowicz JW, Bing XY, Pontabry J, Bošković A, Rando OJ, Torres-Padilla ME. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet, 2017, 49(10): 1502-1510.
doi: 10.1038/ng.3945 pmid: 28846101 |
[7] | Mao Y, Li XY. Advances in the study of LINE-1 retrotransposition in nervous system. China Med Her, 2019, 16(5): 27-29, 46. |
毛洋, 李晓宇. 神经系统中LINE-1转座的研究进展. 中国医药导报, 2019, 16(5): 27-29, 46. | |
[8] |
Ponomaryova AA, Rykova EY, Gervas PA, Cherdyntseva NV, Mamedov IZ, Azhikina TL. Aberrant methylation of LINE-1 transposable elements: a search for cancer biomarkers. Cells, 2020, 9(9): 2017.
doi: 10.3390/cells9092017 |
[9] |
Burns KH. Our conflict with transposable elements and its implications for human disease. Annu Rev Pathol, 2020, 15: 51-70.
doi: 10.1146/annurev-pathmechdis-012419-032633 pmid: 31977294 |
[10] |
Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age- associated diseases. Nature, 2021, 596(7870): 43-53.
doi: 10.1038/s41586-021-03542-y |
[11] | Liu Q, Wang JH, Li XY, Cen S. The connection between LINE-1 retrotransposition and human tumorigenesis. Hereditas(Beijing), 2016, 38(2): 93-102. |
刘茜, 王瑾晖, 李晓宇, 岑山. 逆转录转座子LINE-1与肿瘤的发生和发展. 遗传, 2016, 38(2): 93-102. | |
[12] |
Ostertag EM, Goodier JL, Zhang Y, Kazazian HH. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet, 2003, 73(6): 1444-1451.
doi: 10.1086/380207 pmid: 14628287 |
[13] |
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 2012, 13(7): 484-492.
doi: 10.1038/nrg3230 pmid: 22641018 |
[14] |
Fukuda K, Shinkai Y. SETDB1-mediated silencing of retroelements. Viruses, 2020, 12(6): 596.
doi: 10.3390/v12060596 |
[15] |
Hamdorf M, Idica A, Zisoulis DG, Gamelin L, Martin C, Sanders KJ, Pedersen IM. miR-128 represses L1 retrotransposition by binding directly to L1 RNA. Nat Struct Mol Biol, 2015, 22(10): 824-831.
doi: 10.1038/nsmb.3090 pmid: 26367248 |
[16] |
De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, Funaya C, Antony C, Moreira PN, Enright AJ, O’Carroll D. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature, 2011, 480(7376): 259-263.
doi: 10.1038/nature10547 |
[17] |
Choi J, Hwang SY, Ahn K. Interplay between RNASEH2 and MOV10 controls LINE-1 retrotransposition. Nucleic Acids Res, 2018, 46(4): 1912-1926.
doi: 10.1093/nar/gkx1312 pmid: 29315404 |
[18] |
Goodier JL. Restricting retrotransposons: a review. Mob DNA, 2016, 7: 16.
doi: 10.1186/s13100-016-0070-z |
[19] |
Hu SQ, Li J, Xu FW, Mei S, Le Duff Y, Yin LJ, Pang XJ, Cen S, Jin Q, Liang C, Guo F. SAMHD1 inhibits LINE-1 retrotransposition by promoting stress granule formation. PLoS Genet, 2015, 11(7): e1005367.
doi: 10.1371/journal.pgen.1005367 |
[20] | Dunn DB, Smith JD.Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature, 1955, 175(4451): 336-337. |
[21] | Littlefield JW, Dunn DB. Natural occurrence of thymine and three methylated adenine bases in several ribonucleic acids. Nature, 1958, 181(4604): 254-255. |
[22] |
Adler M, Weissmann B, Gutman AB. Occurrence of methylated purine bases in yeast ribonucleic acid. J Biol Chem, 1958, 230(2): 717-723.
pmid: 13525389 |
[23] |
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA, 1974, 71(10): 3971-3975.
doi: 10.1073/pnas.71.10.3971 pmid: 4372599 |
[24] |
Sun T, Wu RY, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother, 2019, 112: 108613.
doi: 10.1016/j.biopha.2019.108613 |
[25] |
Shi HL, Wei JB, He C. Where, when, and how: context- dependent functions of RNA methylation writers, readers, and erasers. Mol Cell, 2019, 74(4): 640-650.
doi: 10.1016/j.molcel.2019.04.025 |
[26] | Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, Wang X, Ma HL, Huang CM, Yang Y, Huang N, Jiang GB, Wang HL, Zhou Q, Wang XJ, Zhao YL, Yang YG.Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell, 2016, 61(4): 507-519. |
[27] |
Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res, 2017, 45(19): 11356-11370.
doi: 10.1093/nar/gkx778 pmid: 28977517 |
[28] |
Roundtree IA, Luo GZ, Zhang ZJ, Wang X, Zhou T, Cui YQ, Sha JH, Huang XX, Guerrero L, Xie P, He E, Shen B, He C. YTHDC1 mediates nuclear export of N6- methyladenosine methylated mRNAs. eLife, 2017, 6: e31311.
doi: 10.7554/eLife.31311 |
[29] |
Wang X, Lu ZK, Gomez A, Hon GC, Yue YN, Han DL, Fu Y, Parisien M, Dai Q, Jia GF, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505(7481): 117-120.
doi: 10.1038/nature12730 |
[30] |
Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res, 2018, 28(6): 616-624.
doi: 10.1038/s41422-018-0040-8 |
[31] |
Wang X, Zhao BS, Roundtree IA, Lu ZK, Han DL, Ma HH, Weng XC, Chen K, Shi HL, He C. N6-methyladenosine modulates messenger RNA translation efficiency. Cell, 2015, 161(6): 1388-1399.
doi: 10.1016/j.cell.2015.05.014 |
[32] |
Shi HL, Wang X, Lu ZK, Zhao BS, Ma HH, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res, 2017, 27(3): 315-328.
doi: 10.1038/cr.2017.15 |
[33] |
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5′ UTR m6A promotes cap-independent translation. Cell, 2015, 163(4): 999-1010.
doi: 10.1016/j.cell.2015.10.012 pmid: 26593424 |
[34] |
Boulias K, Greer EL. Biological roles of adenine methylation in RNA. Nat Rev Genet, 2023, 24(3): 143-160.
doi: 10.1038/s41576-022-00534-0 |
[35] |
McGraw S, Vigneault C, Sirard MA. Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovine in vitro embryo development. Reproduction, 2007, 133(3): 597-608.
doi: 10.1530/REP-06-0251 pmid: 17379654 |
[36] |
Deng JH, Chen XH, Chen AD, Zheng XC. m6A RNA methylation in brain injury and neurodegenerative disease. Front Neurol, 2022, 13: 995747.
doi: 10.3389/fneur.2022.995747 |
[37] |
Xu ZJ, Lv BB, Qin Y, Zhang B. Emerging roles and mechanism of m6A methylation in cardiometabolic diseases. Cells, 2022, 11(7): 1101.
doi: 10.3390/cells11071101 |
[38] |
Wilkinson E, Cui YH, He YY. Context-dependent roles of RNA modifications in stress responses and diseases. Int J Mol Sci, 2021, 22(4): 1949.
doi: 10.3390/ijms22041949 |
[39] |
Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM, Chen ZS. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer, 2022, 21(1): 52.
doi: 10.1186/s12943-022-01510-2 |
[40] |
Loh D, Reiter RJ. Melatonin: regulation of viral phase separation and epitranscriptomics in post-acute sequelae of COVID-19. Int J Mol Sci, 2022, 23(15): 8122.
doi: 10.3390/ijms23158122 |
[41] |
Pan YT, Ma P, Liu Y, Li W, Shu YQ. Multiple functions of m6A RNA methylation in cancer. J Hematol Oncol, 2018, 11(1): 48.
doi: 10.1186/s13045-018-0590-8 |
[42] |
An YY, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer, 2022, 21(1): 14.
doi: 10.1186/s12943-022-01500-4 pmid: 35022030 |
[43] |
Zhu FY, Yang TR, Yao MF, Shen T, Fang CY. HNRNPA2B1, as a m6A reader, promotes tumorigenesis and metastasis of oral squamous cell carcinoma. Front Oncol, 2021, 11: 716921.
doi: 10.3389/fonc.2021.716921 |
[44] |
Dmitriev SE, Andreev DE, Terenin IM, Olovnikov IA, Prassolov VS, Merrick WC, Shatsky IN. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5′ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol Cell Biol, 2007, 27(13): 4685-4697.
pmid: 17470553 |
[45] |
Hwang SY, Jung H, Mun S, Lee S, Park K, Baek SC, Moon HC, Kim H, Kim B, Choi Y, Go YH, Tang WXF, Choi J, Choi JK, Cha HJ, Park HY, Liang P, Kim VN, Han K, Ahn K. L1 retrotransposons exploit RNA m6A modification as an evolutionary driving force. Nat Commun, 2021, 12(1): 880.
doi: 10.1038/s41467-021-21197-1 |
[46] |
Xiong F, Wang RY, Lee JH, Li SL, Chen SF, Liao ZA, Hasani LA, Nguyen PT, Zhu XY, Krakowiak J, Lee DF, Han L, Tsai KL, Liu Y, Li WB. RNA m6A modification orchestrates a LINE-1-host interaction that facilitates retrotransposition and contributes to long gene vulnerability. Cell Res, 2021, 31(8): 861-885.
doi: 10.1038/s41422-021-00515-8 pmid: 34108665 |
[47] |
Billon V, Cristofari G. Nascent RNA m6A modification at the heart of the gene-retrotransposon conflict. Cell Res, 2021, 31(8): 829-831.
doi: 10.1038/s41422-021-00518-5 |
[48] |
Niehrs C, Luke B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol, 2020, 21(3): 167-178.
doi: 10.1038/s41580-019-0206-3 |
[49] |
Mita P, Wudzinska A, Sun XJ, Andrade J, Nayak S, Kahler DJ, Badri S, LaCava J, Ueberheide B, Yun CY, Fenyö D, Boeke JD. LINE-1 protein localization and functional dynamics during the cell cycle. eLife, 2018, 7: e30058.
doi: 10.7554/eLife.30058 |
[50] |
Abakir A, Giles TC, Cristini A, Foster JM, Dai N, Starczak M, Rubio-Roldan A, Li MM, Eleftheriou M, Crutchley J, Flatt L, Young L, Gaffney DJ, Denning C, Dalhus B, Emes RD, Gackowski D, Corrêa IR, Garcia-Perez JL, Klungland A, Gromak N, Ruzov A. N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat Genet, 2020, 52(1): 48-55.
doi: 10.1038/s41588-019-0549-x |
[51] |
Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev, 2014, 28(13): 1384-1396.
doi: 10.1101/gad.242990.114 |
[52] |
García-Muse T, Aguilera A. R loops: from physiological to pathological roles. Cell, 2019, 179(3): 604-618.
doi: S0092-8674(19)31006-2 pmid: 31607512 |
[53] |
Duda KJ, Ching RW, Jerabek L, Shukeir N, Erikson G, Engist B, Onishi-Seebacher M, Perrera V, Richter F, Mittler G, Fritz K, Helm M, Knuckles P, Bühler M, Jenuwein T. m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Res, 2021, 49(10): 5568-5587.
doi: 10.1093/nar/gkab364 |
[54] |
Kong YM, Cao L, Deikus G, Fan Y, Mead EA, Lai WY, Zhang YZ, Yong R, Sebra R, Wang HL, Zhang XS, Fang G. Critical assessment of DNA adenine methylation in eukaryotes using quantitative deconvolution. Science, 2022, 375(6580): 515-522.
doi: 10.1126/science.abe7489 pmid: 35113693 |
[55] |
Chen LQ, Zhang Z, Chen HX, Xi JF, Liu XH, Ma DZ, Zhong YH, Ng WH, Chen T, Mak DW, Chen Q, Chen YQ, Luo GZ. High-precision mapping reveals rare N6- deoxyadenosine methylation in the mammalian genome. Cell Discov, 2022, 8(1): 138.
doi: 10.1038/s41421-022-00484-1 pmid: 36575183 |
[56] |
Wu TP, Wang T, Seetin MG, Lai YQ, Zhu SJ, Lin KX, Liu YF, Byrum SD, Mackintosh SG, Zhong M, Tackett A, Wang GL, Hon LS, Fang G, Swenberg JA, Xiao AZ. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature, 2016, 532(7599): 329-333.
doi: 10.1038/nature17640 |
[57] |
Bailey JA, Carrel L, Chakravarti A, Eichler EE. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA, 2000, 97(12): 6634-6639.
doi: 10.1073/pnas.97.12.6634 pmid: 10841562 |
[58] |
Liu J, Dou XY, Chen CY, Chen C, Liu C, Xu MM, Zhao SQ, Shen B, Gao YW, Han DL, He C. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science, 2020, 367(6477): 580-586.
doi: 10.1126/science.aay6018 pmid: 31949099 |
[59] |
Liu JD, Gao MW, He JP, Wu KX, Lin SY, Jin LM, Chen YP, Liu H, Shi JJ, Wang XW, Chang L, Lin YY, Zhao YL, Zhang XF, Zhang M, Luo GZ, Wu GM, Pei DQ, Wang J, Bao XC, Chen JK. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature, 2021, 591(7849): 322-326.
doi: 10.1038/s41586-021-03313-9 |
[60] |
Selmi T, Lanzuolo C. Driving chromatin organisation through N6-methyladenosine modification of RNA: what do we know and what lies ahead? Genes (Basel), 2022, 13(2): 340.
doi: 10.3390/genes13020340 |
[61] |
Percharde M, Lin CJ, Yin YF, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen XH, Ramalho-Santos M. A LINE1-Nucleolin partnership regulates early development and ESC identity. Cell, 2018, 174(2): 391-405.e19.
doi: S0092-8674(18)30655-X pmid: 29937225 |
[62] |
Chen C, Liu WQ, Guo JY, Liu YY, Liu XL, Liu J, Dou XY, Le RR, Huang YX, Li C, Yang LY, Kou XC, Zhao YH, Wu Y, Chen JY, Wang H, Shen B, Gao YW, Gao SR. Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein Cell, 2021, 12(6): 455-474.
doi: 10.1007/s13238-021-00837-8 |
[63] | Sommerkamp P. Substrates of the m6A demethylase FTO: FTO-LINE1 RNA axis regulates chromatin state in mESCs. Signal Transduct Target Ther, 2022, 7(1): 212. |
[64] |
Wei JB, Yu XB, Yang L, Liu XL, Gao BY, Huang BX, Dou XY, Liu J, Zou ZY, Cui XL, Zhang LS, Zhao XS, Liu QZ, He PC, Sepich-Poore C, Zhong N, Liu WQ, Li YH, Kou XC, Zhao YH, Wu Y, Cheng XJ, Chen C, An YM, Dong XY, Wang HY, Shu Q, Hao ZY, Duan T, He YY, Li XK, Gao SR, Gao YW, He C. FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development. Science, 2022, 376(6596): 968-973.
doi: 10.1126/science.abe9582 |
[65] |
Li Y, Xia LJ, Tan KF, Ye XD, Zuo ZX, Li MC, Xiao R, Wang ZH, Liu XN, Deng MQ, Cui JR, Yang MT, Luo QZ, Liu S, Cao X, Zhu HR, Liu TQ, Hu JX, Shi JF, Xiao S, Xia LX. N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet, 2020, 52(9): 870-877.
doi: 10.1038/s41588-020-0677-3 |
[66] |
Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, Dossin F, Fouassier C, Lameiras S, Bourc’his D. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature, 2021, 591(7849): 312-316.
doi: 10.1038/s41586-020-03135-1 |
[67] |
Rodic N. LINE-1 activity and regulation in cancer. Front Biosci (Landmark Ed), 2018, 23(9): 1680-1686.
doi: 10.2741/4666 pmid: 29293456 |
[68] |
Gu ZM, Liu YX, Zhang Y, Cao H, Lyu JH, Wang X, Wylie A, Newkirk SJ, Jones AE, Lee M, Botten GA, Deng M, Dickerson KE, Zhang CC, An WF, Abrams JM, Xu J. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nat Genet, 2021, 53(5): 672-682.
doi: 10.1038/s41588-021-00829-8 pmid: 33833453 |
[1] | Yucheng Liu, Yanting Shen, Zhixi Tian. Frontiers of soybean pan-genome studies [J]. Hereditas(Beijing), 2024, 46(3): 183-198. |
[2] | Zhong Bian, Dongping Cao, Wenshu Zhuang, Shuwei Zhang, Qiaoquan Liu, Lin Zhang. Revelation of rice molecular design breeding: the blend of tradition and modernity [J]. Hereditas(Beijing), 2023, 45(9): 718-740. |
[3] | Xiaoping Lian, Guangfu Huang, Yujiao Zhang, Jing Zhang, Fengyi Hu, Shilai Zhang. The discovery and utilization of favorable genes in Oryza longistaminata [J]. Hereditas(Beijing), 2023, 45(9): 765-780. |
[4] | Jun Ma, Anping Fan, Wusheng Wang, Jinchuan Zhang, Xiaojun Jiang, Ruijun Ma, Sheqiang Jia, Fei Liu, Chuchao Lei, Yongzhen Huang. Analysis of genetic diversity and genetic structure of Qinchuan cattle conservation population using whole-genome resequencing [J]. Hereditas(Beijing), 2023, 45(7): 602-616. |
[5] | Dantong Xu, Yifei Wang, Jiali Cai, Wentao Gong, Xiangchun Pan, Yuhan Tian, Qingpeng Shen, Jiaqi Li, Xiaolong Yuan. Study on detection of CNVs using human whole genome bisulfite sequencing data [J]. Hereditas(Beijing), 2023, 45(4): 324-340. |
[6] | Chengxian Wang, Yikang S. Rong, Min Cui. The molecular mechanism of Drosophila restricting telomeric transposons [J]. Hereditas(Beijing), 2023, 45(3): 221-228. |
[7] | Zhongsheng Wu, Yu Gao, Yongtao Du, Song Dang, Kangmin He. The protocol of tagging endogenous proteins with fluorescent tags using CRISPR-Cas9 genome editing [J]. Hereditas(Beijing), 2023, 45(2): 165-175. |
[8] | Huiyu Chen, Suwen Zhao. Progress on Z genome biosynthetic pathway of bacteriophage [J]. Hereditas(Beijing), 2023, 45(10): 887-903. |
[9] | Kai Xia, Fangmei Liu, Yuqing Chen, Shanshan Chen, Chunying Huang, Xuequn Zhao, Ruyi Sha, Jun Huang. Mechanism and evolutionary analysis of Yarrowia lipolytica CA20 capable of producing erythritol with a high yield based on comparative genomics [J]. Hereditas(Beijing), 2023, 45(10): 904-921. |
[10] | Meizhen Liu, Liren Wang, Yongmei Li, Xueyun Ma, Honghui Han, Dali Li. Generation of genetically modified rat models via the CRISPR/Cas9 technology [J]. Hereditas(Beijing), 2023, 45(1): 78-87. |
[11] | Xiuli Chen, Haiyan Huang, Qiang Wu. Targeted deletion of 5′HS2 enhancer of β-globin locus control region in K562 cells [J]. Hereditas(Beijing), 2022, 44(9): 783-797. |
[12] | Mengxuan Xu, Ming Zhou. Advances of RNA polymerase IV in controlling DNA methylation and development in plants [J]. Hereditas(Beijing), 2022, 44(7): 567-580. |
[13] | Wanjing Ping, Yichen Liu, Qiaomei Fu. Exploring the evolution of archaic humans through sedimentary ancient DNA [J]. Hereditas(Beijing), 2022, 44(5): 362-369. |
[14] | Jiming Xu, Jianshu Zhu, Mengzhen Li, Han Hu, Chuanzao Mao. Progress on methods for acquiring flanking genomic sequence [J]. Hereditas(Beijing), 2022, 44(4): 313-321. |
[15] | Cong Liu, Jiani Feng, Weiwei Li, Weiwei Zhu, Yunxin Xue, Dai Wang, Xilin Zhao. Maintenance of dNTP pool homeostasis and genomic stability [J]. Hereditas(Beijing), 2022, 44(2): 96-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号