[1] | George B, Seals S, Aban I . Survival analysis and regression models. J Nucl Cardiol, 2014,21:686-694. | [2] | Rasmussen L, Pratt N, Hansen MR, Hallas J, Pottegard A . Using the "proportion of patients covered" and the Kaplan- Meier survival analysis to describe treatment persistence. Pharmacoepidemiol Drug Saf, 2018,27:867-871. | [3] | Hsu CH, Yu M . Cox regression analysis with missing covariates via nonparametric multiple imputation. Stat Methods Med Res, 2018,962280218772592. | [4] | Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W , Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015,43:e47. | [5] | Heyer LJ, Kruglyak S, Yooseph S . Exploring expression data: identification and analysis of coexpressed genes. Genome Res, 1999,9:1106-1115. | [6] | Bunger R, Mallet RT . Metabolomics and receiver operating characteristic analysis: a promising approach for sepsis diagnosis. Crit Care Med, 2016,44:1784-1785. | [7] | Grau J, Grosse I, Keilwagen J . PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics, 2015,31:2595-2597. | [8] | Cichonska A, Rousu J, Marttinen P, Kangas AJ, Soininen P, Lehtimaki T, Raitakari OT, Jarvelin MR, Salomaa V, Ala-Korpela M, Ripatti S , Pirinen M. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis. Bioinformatics, 2016,32:1981-1989. | [9] | Dimou NL, Tsirigos KD, Elofsson A, Bagos PG . GWAR: robust analysis and meta-analysis of genome-wide association studies. Bioinformatics, 2017,33:1521-1527. | [10] | Chin L, Andersen JN, Futreal PA . Cancer genomics: from discovery science to personalized medicine. Nature Medicine, 2011,17:297-303. | [11] | Tomczak K, Czerwinska P, Wiznerowicz M . The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn), 2015,19:A68-77. | [12] | Hanahan D, Weinberg RA . The hallmarks of cancer. Cell, 2000,100:57-70. | [13] | Sirintrapun SJ, Zehir A, Syed A, Gao J, Schultz N, Cheng DT . Translational bioinformatics and clinical research (biomedical) informatics. Clin Lab Med, 2016,36:153-181. | [14] | Li QK, Pavlovich CP, Zhang H, Kinsinger CR, Chan DW . Challenges and opportunities in the proteomic characterization of clear cell renal cell carcinoma (ccRCC): a critical step towards the personalized care of renal cancers. Semin Cancer Biol, 2018, DOI: 10.1016/j.semcancer.2018.06.004. | [15] | Smith CC, Beckermann KE ,Bortone DS, de Cubas AA, Bixby LM, L |
[1] |
Qingyu Sun, Yang Zhou, Lijuan Du, Mengke Zhang, Jiale Wang, Yuanyuan Ren, Fang Liu.
Analysis between macrophage-related genes with prognosis and tumor microenvironment in non-small cell lung cancer
[J]. Hereditas(Beijing), 2023, 45(8): 684-699.
|
[2] |
Weize Kong, Yishi Liu, Xiaodong Gao, Morihisa Fujita.
Comprehensive in silico analysis of glycosylphosphatidylinositol- anchored protein (GPI-AP) related genes expression profiles in human normal and cancer tissues
[J]. Hereditas(Beijing), 2023, 45(8): 669-683.
|
[3] |
Chunhui Ma, Haixu Hu, Lijuan Zhang, Yi Liu, Tianyi Liu.
Establishment and verification of a digital PCR assay for the detection of CK19 expression in quantitative analysis of circulating tumor cell
[J]. Hereditas(Beijing), 2023, 45(3): 250-260.
|
[4] |
Dong Chang, Xiangxiang Liu, Rui Liu, Jianwei Sun.
The role and regulatory mechanism of FSCN1 in breast tumorigenesis and progression
[J]. Hereditas(Beijing), 2023, 45(2): 115-127.
|
[5] |
Sihan Qi, Qilin Wang, Junyou Zhang, Qian Liu, Chunyan Li.
The regulatory mechanisms by enhancers during cancer initiation and progression
[J]. Hereditas(Beijing), 2022, 44(4): 275-288.
|
[6] |
Changgui Lei, Xueyuan Jia, Wenjing Sun.
Establish six-gene prognostic model for glioblastoma based on multi-omics data of TCGA database
[J]. Hereditas(Beijing), 2021, 43(7): 665-679.
|
[7] |
Youhong Chen, Wenhao Yang, Chao Ni.
Using esophagus organoid to explore the role of c-Myc in esophageal cancer initiation
[J]. Hereditas(Beijing), 2021, 43(6): 601-614.
|
[8] |
Yige Li, Dandan Zhang.
Progress on functional mechanisms of colorectal cancer causal SNPs in post-GWAS
[J]. Hereditas(Beijing), 2021, 43(3): 203-214.
|
[9] |
Yajie Wang, Shuangshuang Wu, Jiang Chu, Xiangyang Kong.
Lung microbiome mediates the progression from chronic obstructive pulmonary disease to lung cancer through inflammation
[J]. Hereditas(Beijing), 2021, 43(1): 30-39.
|
[10] |
Qian Liu, Chunyan Li.
The identification of enhancers and its application in cancer studies
[J]. Hereditas(Beijing), 2020, 42(9): 817-831.
|
[11] |
Qin Lili, Li Yijian, Liang Zhaorui, Dai Lei, Li Wenhui, Chen Chao, Huang Yaling, Zhang Le, Liu Songming, Qiu Si, Ge Yuping, Peng Wenting, Lin Xinxin, Zhang Xiuqing, Dong Xuan, Li Bo.
A method of screening highly common neoantigens with immunogenicity in colorectal cancer based on public somatic mutation library
[J]. Hereditas(Beijing), 2020, 42(6): 599-612.
|
[12] |
Huxing Chen, Lei Xu, Jing Li, Zheng Guo, Lu Ao.
The development of a general drug resistance score model based on MIC50 related gene pairs in colorectal cancer cell lines
[J]. Hereditas(Beijing), 2020, 42(6): 577-585.
|
[13] |
Qiang Zhang, Mingliang Gu.
Single-cell sequencing and its application in breast cancer
[J]. Hereditas(Beijing), 2020, 42(3): 250-268.
|
[14] |
Xinyuan Wang, Yu Zhang, Nan Yang, He Cheng, Yujie Sun.
DNMT3a mediates paclitaxel-induced abnormal expression of LINE-1 by increasing the intragenic methylation
[J]. Hereditas(Beijing), 2020, 42(1): 100-111.
|
[15] |
Huanzi Lu,Dikan Wang,Zhi Wang.
Correlation analysis of the prognosis of HPV positive oropharyngeal cancer patients with T cell infiltration and neoantigen load
[J]. Hereditas(Beijing), 2019, 41(8): 725-735.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|