Hereditas(Beijing) ›› 2020, Vol. 42 ›› Issue (9): 817-831.doi: 10.16288/j.yczz.20-097
• Review • Next Articles
Received:
2020-04-09
Revised:
2020-07-23
Online:
2020-09-20
Published:
2020-08-04
Contact:
Li Chunyan
E-mail:lichunyan@buaa.edu.cn
Supported by:
Qian Liu, Chunyan Li. The identification of enhancers and its application in cancer studies[J]. Hereditas(Beijing), 2020, 42(9): 817-831.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Common methods for the prediction and functional analysis of enhancers"
方法 | 描述 | 优势 | 局限性 |
---|---|---|---|
ChIP-Seq | 一种将染色质免疫沉淀与高通量测序技术相结合所产生的技术 | 高分辨率、低噪、高覆盖率、样本需求较少 | 与ChIP芯片技术相比成本较高,数据质量依赖抗体质量 |
DNase-Seq | 一种结合高通量测序技术鉴定全基因组内DNase I超敏位点的方法,进行全基因组假定增强子等调控区域的预测 | 提供的信息比ChIP-Seq,更广泛 | 样本需求较大,重复性较差;DNase I对DNA的切割具有序列依赖性,测序误差较大;不能保证切割后的结果,就完全是蛋白质覆盖的区域 |
ATAC-Seq | 利用转座酶研究染色质可进入性的高通量测序技术,利用DNA转座酶技术实现染色质可及性分析 | 样本需求量少,灵敏度高,操作简单,耗时短,实验重复性好,能同时揭示开放染色质的基因组位置,DNA结合蛋白,转录结合位点的相互作用 | 有一半DNA片段无法利用,无法进行PCR富集,DNA剪切效果仍需优化 |
RNA-Seq | 一种全基因组水平的基因表达差异研究,用于分析基因表达水平以了解细胞在不同状态下的基因表达差异 | 高通量,高灵敏度,可重复性高,检测范围广 | 检测细胞内累积的RNA,包括来自核糖体线粒体的RNA,影响RNA表达水平的准确性 |
3C | 一种结合免疫共沉淀和PCR扩增研究两个位点之间的相互作用的技术 | — | 覆盖范围通常小于1 Mb;只能研究点对点的互作方式 |
4C | 在全基因组范围研究一个特定基因与所有互作基因之间的相互作用的高通量测序技术 | 覆盖全基因组范围 | 只能研究与一个特定基因互作的所有基因 |
5C | 研究多基因与多基因之间的相互作用高通量测序技术 | 可以研究多个位点与其相互作用的所有位点之间的相互作用 | 覆盖范围有限,通常小于1 Mb |
Hi-C | 在全基因组范围研究所有染色体和染色体外的相互作用的高通量测序技术 | 覆盖全基因组范围,操作时间短,花费少 | 分辨率低,噪声高 |
ChIA-PET | 一种整合了免疫共沉淀、染色质铰链、双末端标签及高通量测序的技术,可以在全基因组范围研究染色质的相互作用 | 能够确定蛋白质结合位点间的相互作用;使用超声打断DNA-蛋白质复合体,避免使用限制性内切酶引入染色质随机连接 | 无法检测出不依赖蛋白质因子的染色体相互作用;抗体的纯度、质量、特异性要求较高 |
CRISPR | 将Cas9核酸酶与向导RNA(gRNA)结合,可在基因组的特定位点切割,从而实现基因的移除、添加或替换 | 在内源性环境中研究增强子,对靶向位点进行修饰,操作简单、快速 | 易脱靶,有效切割效率低 |
[1] | Zhang Y, Xu XF, Guo CY . The regulation of sonic hedgehog gene in the development process. Prog Mod Biomed, 2014,14(2):358-360. |
张艳, 徐选福, 郭传勇 . Sonic Hedgehog基因及其在发育过程中的调控作用. 现代生物医学进展, 2014,14(2):358-360. | |
[2] |
Bunney PE, Zink AN, Holm AA, Billington CJ, Kotz CM . Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiol Behav, 2017,176(1):139-148.
doi: 10.1016/j.physbeh.2017.03.040 |
[3] |
Chapel-Fernandes S, Jordier F, Lauro F, Maitland N, Chiaroni J, De Micco P, Mannoni P, Bagnis C . Use of the PSA enhancer core element to modulate the expression of prostate- and non-prostate-specific basal promoters in a lentiviral vector context. Cancer Gene Ther, 2006,13(10):919-929.
pmid: 16741521 |
[4] |
Gilbert L A, Horlbeck MA, Adamson B, Villalta JE, Chen YW, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS . Genome- scale CRISPR-mediated control of gene repression and activation. Cell, 2014,159(3):647-661.
pmid: 25307932 |
[5] | Tang LD, Wu N, Jin Y . Enhancer hijacking: a new direction in the study of tumorigenesis. Int J Genet, 2018,41(6):478-482. |
汤柳笛, 吴楠, 金焰 . 增强子劫持:研究肿瘤发生机制的新方向. 国际遗传学杂志, 2018,41(6):478-482. | |
[6] |
Abraham BJ, Hnisz D, Weintraub AS, Kwiatkowski N, Li CH, Li Z, Weichert-Leahey N, Rahman S, Liu Y, Etchin J, Li B, Shen S, Lee TI, Zhang J, Look AT, Mansour MR, Young RA . Small genomic insertions form enhancers that misregulate oncogenes. Nat Commun, 2017,8(15797):1-12.
doi: 10.1038/s41467-016-0009-6 |
[7] |
Grosschedl R, Birnstiel ML . Spacer DNA sequences upstream of the T-A-T-A-A-A-T-A sequence are essential for promotion of H2A histone gene transcription in vivo. Proc Natl Acad Sci USA, 1980,77(12):7102-7106.
pmid: 6938957 |
[8] |
Benoist C, Chambon P . In vivo sequence requirements of the SV40 early promotor region. Nature, 1981,290(5804):304-310.
doi: 10.1038/290304a0 |
[9] | Zhou Y, Shi XM, Han S, Guo M, Wu YX, Wang JX, Jin ZJ . Research progess of super enhancer. J Int Repord Heal/Fam Plan, 2017,36(2):137-141, 159. |
周洋, 施晓敏, 韩澍, 郭猛, 吴玉仙, 王金兴, 金志军 . 超级增强子的发现与研究进展. 国际生殖健康/计划生育杂志, 2017,36(2):137-141, 159. | |
[10] | Xie JH, Sun Y, Wang S, Tian XH, Cao JH . Functional identification of enhancer and its research progress in agricultural animals. Chin J Cell Biol, 2019,41(7):1395-1400. |
谢骏辉, 孙艳, 王昇, 田小欢, 曹建华 . 增强子功能鉴定及其在农业动物中的研究进展. 中国细胞生物学学报, 2019,41(7):1395-1400. | |
[11] | Yan Q, Zhou XQ, Xue W, Dai Y . Advances in the relationship between epigenetic DNA methylation and histone modification with diseases. Med Recap, 2017,23(16):3160-3163, 3169. |
晏强, 周献青, 薛雯, 戴勇 . 表观遗传DNA甲基化和组蛋白修饰与疾病关系的研究进展. 医学综述, 2017,23(16):3160-3163, 3169. | |
[12] |
Bulger M, Groudine M . Functional and mechanistic diversity of distal transcription enhancers. Cell, 2011,144(3):327-339
pmid: 21295696 |
[13] | Wu ZQ, Mi ZY . Research progress of super enhancer in cancer. Hereditas(Beijing), 2019,41(1):41-51. |
吴志强, 米泽云 . 超级增强子在肿瘤研究中的进展. 遗传, 2019,41(1):41-51. | |
[14] | DI Micco R, Fontanals-Cirera B, Low V, Ntziachristos P, Yuen SK, Lovell CD, Dolgalev I, Yonekubo Y, Zhang GT, Rusinova E, Gerona-Navarro G, Cañamero M, Ohlmeyer M, Aifantis I, Zhou MM, Tsirigos A, Hernando E . Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell, 2014,9(1):234-247. |
[15] |
Ing-Simmons E, Seitan VC, Faure AJ, Flicek P, Carroll T, Dekker J, Fisher AG, Lenhard B, Merkenschlager M . Spatial enhancer clustering and regulation of enhancer- proximal genes by cohesin. Genome Res, 2015,25(4):504-513.
doi: 10.1101/gr.184986.114 |
[16] |
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA . Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 2013,153(2):307-319.
doi: 10.1016/j.cell.2013.03.035 |
[17] | Sun CB, Zhang X . Advance in the research on super- enhancer. Hereditas(Beijing), 2016,38(12):1056-1068. |
孙长斌, 张曦 . 超级增强子研究进展. 遗传, 2016,38(12):1056-1068. | |
[18] |
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke H, Young RA . Transcriptional super- enhancers connected to cell identity and disease. Cell, 2013,155(4):1-24.
doi: 10.1016/j.cell.2013.09.005 |
[19] |
Andersson1 R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao XB, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jørgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Heick Jensen TH, Suzuki H, Hayashizaki Y, Muller F, R.R. Forrest A, Carninci P, l Rehli M, Sandelin A. An atlas of active enhancers across human cell types and tissues. Nature, 2014,507(7493):455-461.
doi: 10.1038/nature12787 |
[20] |
Orlando V, Strutt H, Paro R . Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods, 1997,11(2):205-214.
doi: 10.1006/meth.1996.0407 pmid: 8993033 |
[21] |
Pillai S, Dasgupta P, Chellappan SP . Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifi cations in vivo. Methods in Molecular Biology, 2015,1288:429-446.
pmid: 25827895 |
[22] | Yang W, Liu RS . Introduction of ChIP-Seq technology and data analysis. Henan Sci, 2014,32(8):1440-1444. |
杨薇, 刘若水 . 染色质免疫共沉淀-测序(ChIP-Seq)技术及数据分析方法介绍. 河南科学, 2014,32(8):1440-1444. | |
[23] |
Visel A, Blow MJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA . ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 2009,457(7231):854-858.
doi: 10.1038/nature07730 pmid: 19212405 |
[24] | Xiao T, Zhou J, Fu JJ F . Research progress in histone modifications as epigenetic tumor markers. J Southwest Med Univ, 2019,42(3):284-288. |
肖婷, 周菊, 傅俊江 . 组蛋白修饰作为表观遗传肿瘤标志物的研究进展. 西南医科大学学报, 2019,42(3):284-288. | |
[25] |
Heintzman ND, Stuart RK, Hon G, Fu YT, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu CX, Ching KA, Wang W, Weng ZP, Green RD, Crawford GE, Ren B . Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 2007,39(3):311-318.
doi: 10.1038/ng1966 pmid: 17277777 |
[26] |
Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R . Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA, 2010,107(50):21931-21936.
pmid: 21106759 |
[27] |
Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez- Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczyński B, Riddell A, Furlong EEM . Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet, 2012,44(2):148-156.
pmid: 22231485 |
[28] |
Taylor GCA, Eskeland R, Hekimoglu-Balkan B, Pradeepa MM, Bickmore WA . H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction. Genome Res, 2013,23(12):2053-2065.
doi: 10.1101/gr.155028.113 |
[29] |
Pradeepa MM, Grimes GR, Kumar Y, Olley G, Taylor GCA, Schneider R, Bickmore WA . Histone H3 globular domain acetylation identifies a new class of enhancers. Nat Genet, 2016,48(6):681-686.
pmid: 27089178 |
[30] | Yang LL, Jiang T, Sui YX, Shi WJ, Song YB, Tian YP, Zhang PJ . DNA methylation detection technology. Labeled Immunoassays & Clin Med, 2020,27(5):898-904. |
杨林林, 蒋涛, 隋亚鑫, 史文杰, 宋永波, 田亚军, 张朋军 . DNA甲基化检测技术. 标记免疫分析与临床, 2020,27(5):898-904. | |
[31] | Cao L, Guo LJ, Guo XJ, Gong Y, Li F . New path of cancer liquid biopsy:DNA methylation detection by digital PCR. Prog Biochem Biophys, 2019,46(11):1085-1100. |
曹雷, 郭丽娟, 郭晓锦, 巩燕, 李菲 . 癌症液体活检新思路:数字PCR检测DNA甲基化. 生物化学与生物物理进展, 2019,46(11):1085-1100. | |
[32] | Yan JG, Fu HY, Shen JZ, Zhou HR, Zhang YY, Huang JL, Chen CJ, Huang SH . Application of bisulfite sequencing pcr in detecting the abnormal methylation of suppressor gene of Wnt signaling pathway in acute promyelocytic leukemia. J Exp Hematol, 2016,24(5):1299-1304. |
晏建国, 付海英, 沈建箴, 周华蓉, 张媛媛, 黄劲龙, 陈聪杰, 黄思晗 . 重亚硫酸氢盐测序法检测Wnt信号通路抑制基因在急性早幼粒细胞白血病细胞中甲基化变化. 中国实验血液学杂志, 2016,24(5):1299-1304. | |
[33] |
Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, Gregory L, Lonie L, Chew A, Wei CL, Ragoussis J, Natoli G . Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity, 2010,32(3):317-328.
doi: 10.1016/j.immuni.2010.02.008 |
[34] | Kim T, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-haley K, Kuersten S, Markenscoff-papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME,. Widespread transcription at neuronal activity-regulated enhancers. Nature, 2010,465(7295):182-187. |
[35] | Chen H, Li CY, Peng XX, Zhou ZC, Weinstein JN, Liang H . A Pan-Cancer analysis of enhancer expression in nearly 9000 patient samples. Cell, 2018,173(3):386-399. |
[36] | Zhang Z, Lee J, Ruan H, Ye YQ, Krakowiak J, Hu QS, Xiang Y, Gong J, Zhou BY, Wang L, Lin CR, Diao LX, Mills GB, Li WB, Han L . Transcriptional landscape and clinical utility of enhancer RNAs for eRNA-targeted therapy in cancer. Nat Commun, 2019,10(1):4562. |
[37] | Guo XL, Zhang QF, Ye QS, Mo ZT, Li WN, Gao SY . Construction of CRISPR/Cas9 vectors targeting to ezrin enhancer key region. J Biol, 2017,34(6):19-22. |
郭晓龙, 张青峰, 野庆松, 莫镇涛, 李文娜, 高书颖 . 靶向ezrin增强子关键区的CRISPR/Cas9载体的构建. 生物学杂志, 2017,34(6):19-22. | |
[38] | Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han RQ, Myacheva K, Zwart W, Elkon R, Agami R . Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol, 2016,34(2):192-198. |
[39] | Mo WH, Zhang HQ, Zhao ZF, Shi JD, Lu WG . The role and mechanism of enhancer containing risk SNP rs10486567 in prostate cancer. Acta Sci Natl Univ Nankai (Nat Sci Ed), 2018,51(2):9-13. |
莫文慧, 张浩琪, 赵忠芳, 石建党, 吕万革 . 含有前列腺癌风险性SNPrs10486567位点潜在增强子座位在前列腺癌细胞中功能的研究. 南开大学学报(自然科学版), 2018,51(2):9-13. | |
[40] | Zhang XY, Choi PS, Francis JM, Imielinski M, Watanabe H, Cherniack AD, Meyerson M . Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat Genet, 2016,48(2):176-182. |
[41] | Wang J, Zhao ZW, Ma LN, Ma Q . Research progress on enhancer forecast and targeted sequencing technology. Chin Anim Husb Vet Med, 2019,46(5):1308-1315. |
王锦, 赵正伟, 马丽娜, 马青 . 增强子预测及靶向测序技术研究进展. 中国畜牧兽医, 2019,46(5):1308-1315. | |
[42] | Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA . Repurposing CRISPR as an RNA- Guided platform for sequence-specific control of gene expression. Cell, 2013,152(5):1173-1183. |
[43] | Thakore PI, D'Ippolito AM, Song YL, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods, 2015,12(12):1143-1149. |
[44] | Gao XF, Tsang JCH, Gaba F, Wu DH, Lu LM, Liu PT . Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res, 2014,42(20):e155. |
[45] | Xu L, Zhao LX, Gao YD, Xu J, Han RZ . Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA. Nucleic Acids Res, 2017,45(5):e28. |
[46] | Jiang YY, Lin DC, Mayakonda A, Hazawa M, Ding L W, Chien WW, Xu L, Chen Y, Xiao JF, Senapedis W, Baloglu E, Kanojia D, Shang L, Xu X, Yang H, Tyner JW, Wang MR, Koeffler HP . Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma. Gut, 2017,66(8):1358-1368. |
[47] | Shioga T, Kondo R, Ogasawara S, Akiba J, MizuochiI S, Kusano H, Mihara Y, Tanigawa M, Kinjyo Y, Naito Y, Kuromatsu R, Nakashima O, Yano H,. Usefulness of tumor tissue biopsy for predicting the biological behavior of hepatocellular carcinoma. Anticancer Research, 2020,40(7):4105-4113. |
[48] | Dong Y, Wang Z, Shi QH . Liquid biopsy based single-cell transcriptome profiling characterizes heterogeneity of disseminated tumor cells from lung adenocarcinoma. Proteomics, 2020,20(13):1-7. |
[49] | Sur I, Taipale J . The role of enhancers in cancer. Nat Rev Cancer, 2016,16(8):483-493. |
[50] | Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J . Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell, 2016,164(1-2):57-68. |
[51] | Bastaki S, Irandoust M, Ahmadi A, Hojjat-Farsangi M, Ambrose P, Hallaj S, Edalati M, Ghalamfarsa G, Azizi G, Yousefi M, Chalajour H, Jadidi-Niaragh F . PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sci, 2020,247:117437. |
[52] | Chen LX, Cao LX . MiR-150 inhibits cell proliferation through regulating c-Myb in human chronic myeloid leukemia cell line K562. Basic Clin Med, 2019,39(9):1259-1264. |
陈连香, 曹丽霞 . miR-150通过调节c-Myb抑制人慢性髓系白血病细胞系K562增殖. 基础医学与临床, 2019,39(9):1259-1264. | |
[53] | Tak YG, Hung Y, Yao LJ, Grimmer MR, Do A, Bhakta MS, O’Geen H, Segal DJ, Farnham PJ Effects on the transcriptome upon deletion of a distal element cannot be predicted by the size of the H3K27Ac peak in human cells. Nucleic Acids Res, 2016,44(9):4123-4133. |
[54] | Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, Etchin J, Lee L, Sallan SE, Silverman LB, Loh ML, Hunger SP, Sanda T, Young RA, Look AT . An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science, 2014,346(6215):1373-1377. |
[55] | Luo W, Jiang QH, Liu JM, Hu HW, Wen L, Wei XF, Liu R, Wu ZJ . Preparation of artificial transcription factors to HBV and its targeted inhibitory effect on activity of HBV enhancer. Acta Acad Med Mil Tert, 2014,36(5):450-455. |
罗伟, 蒋清虎, 刘济铭, 胡慧雯, 温路, 魏续福, 刘锐, 吴忠均 . HBV人工转录因子的制备及其靶向抑制HBV增强子活性研究. 第三军医大学学报, 2014,36(5):450-455. | |
[56] | Korbel JO, Campbell PJ . Criteria for inference of chromothripsis in cancer genomes. Cell, 2013,152(6):1226-1236. |
[57] | Paulsen T, Kumar P, Koseoglu MM, Dutta A . Discoveries of extrachromosomal circles of DNA in normal and tumor cells. Trends Genet, 2018,34(4):270-278. |
[58] | Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B, Arden K, Ren B, Nathanson DA, Kornblum HI, Taylor MD, Kaushal S, Cavenee WK, Wechsler-Reya R, Furnari FB, Vandenberg SR, Rao PN, Wahl GM, Bafna V, Mischel PS . Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature, 2017,543(7643):122-125. |
[59] | Wu SH, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, Luebeck J, Rajkumar U, Diao YR, Li B, Zhang WJ, Jameson N, Corces MR, Granja JM, Chen XQ, Coruh C, Abnousi A, Houston J, Ye Z, Hu R, Yu M, Kim H, Law JA, Verhaak RGW, Hu M, Furnari FB, Chang HY, Ren B, Bafna V, Mischel PS . Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature, 2019,575(7784):699-703. |
[60] | Morton AR, Dogan-artun N, Faber ZJ, Macleod G, Bartels CF, Piazza MS, Allan KC, Mack SC, Wang XX, Gimple RC, Wu QL, Rubin BP, Shetty S, Angers S, Dirks PB, Sallari RC, Lupien M, Rich JN, Scacheri PC,. Functional enhancers shape extrachromosomal oncogene amplifications. Cell, 2019, 179(6): 1330-1341.e13. |
[61] | Hanahan D, Weinberg RA . Hallmarks of cancer: The next generation. Cell, 2011,144(5):646-674. |
[62] | Hsieh CL, Fei T, Chen YW, Li TT, Gao YF, Wang XD, Sun T, Sweeney CJ, Lee GSM, Chen SY, Balk SP, Liu XS, Brown M, Kantoff PW . Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci USA, 2014,111(20):7319-7324. |
[63] | Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA . Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 2013,153(2):320-334. |
[64] | Jiang Y, Jiang YY, Xie JJ, Mayakonda A, Hazawa M, Chen L, Xiao JF, Li CQ, Huang ML, Ding LW, Sun QY, Xu L, Kanojia D, Jeitany M, Deng JW, Liao LD, Soukiasian HJ, Berman BP, Hao JJ, Xu LY, Li EM, Wang MR, Bi XG, Lin DC, Koeffler HP . Co-activation of super- enhancer-driven CCAT1 by TP63 and SOX2 promotes squamous cancer progression. Nat Commun, 2018,9(1):3619. |
[65] | Peng L, Jiang BY, Yuan XQ, Qiu YT, Peng JY, Huang YS, Zhang CY, Zhang Y, Lin ZY, Li JS, Yao WC, Deng WX, Zhang YQ, Meng M, Pan X, Li CQ, Yin D, Bi XY, Li GC, Lin DC . Super-enhancer-associated long noncoding RNA HCCL5 is activated by ZEB1 and pro motes the malignancy of hepatocellular carcinoma. Cancer Res, 2019,79(3):572-584. |
[66] | Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA . Super-enhancers in the control of cell identity and disease. Cell, 2013,155(4):934-947. |
[67] | Wang GR . The research of tumor specific activated super enhancer PLAU_SE [Dissertation]. Harbin Inst Technol, 2018. |
王冠儒 . 肿瘤特异超级增强子PLAU_SE及其组分的鉴定和功能研究[学位论文]. 哈尔滨工业大学, 2018. |
[1] | Qingyu Sun, Yang Zhou, Lijuan Du, Mengke Zhang, Jiale Wang, Yuanyuan Ren, Fang Liu. Analysis between macrophage-related genes with prognosis and tumor microenvironment in non-small cell lung cancer [J]. Hereditas(Beijing), 2023, 45(8): 684-699. |
[2] | Weize Kong, Yishi Liu, Xiaodong Gao, Morihisa Fujita. Comprehensive in silico analysis of glycosylphosphatidylinositol- anchored protein (GPI-AP) related genes expression profiles in human normal and cancer tissues [J]. Hereditas(Beijing), 2023, 45(8): 669-683. |
[3] | Chunhui Ma, Haixu Hu, Lijuan Zhang, Yi Liu, Tianyi Liu. Establishment and verification of a digital PCR assay for the detection of CK19 expression in quantitative analysis of circulating tumor cell [J]. Hereditas(Beijing), 2023, 45(3): 250-260. |
[4] | Dong Chang, Xiangxiang Liu, Rui Liu, Jianwei Sun. The role and regulatory mechanism of FSCN1 in breast tumorigenesis and progression [J]. Hereditas(Beijing), 2023, 45(2): 115-127. |
[5] | Xiuli Chen, Haiyan Huang, Qiang Wu. Targeted deletion of 5′HS2 enhancer of β-globin locus control region in K562 cells [J]. Hereditas(Beijing), 2022, 44(9): 783-797. |
[6] | Siyuan Xu, Jia Shou, Qiang Wu. Additional evidence of HS5-1 enhancer eRNA PEARL for protocadherin alpha gene regulation [J]. Hereditas(Beijing), 2022, 44(8): 695-764. |
[7] | Sihan Qi, Qilin Wang, Junyou Zhang, Qian Liu, Chunyan Li. The regulatory mechanisms by enhancers during cancer initiation and progression [J]. Hereditas(Beijing), 2022, 44(4): 275-288. |
[8] | Xueqian Wang, Qingzhen Zhang, Peng Cheng, Tingting Dong, Weiguo Li, Zhe Zhou, Shengqi Wang. Genetic polymorphisms of 66 InDel loci in the Chinese Han population [J]. Hereditas(Beijing), 2022, 44(4): 335-345. |
[9] | Xingqi Wan, Wanzhen Wei, Shengliang Guo, Yixiao Cui, Xueying Jing, Lujie Huang, Jie Ma. Functional analysis of the long-range regulatory element of BMP2 gene [J]. Hereditas(Beijing), 2022, 44(12): 1141-1147. |
[10] | Ling Wang, Jinhuan Li, Haiyan Huang, Qiang Wu. Serial deletions of tandem reverse CTCF sites reveal balanced HOXD regulatory landscape of enhancers [J]. Hereditas(Beijing), 2021, 43(8): 775-791. |
[11] | Changgui Lei, Xueyuan Jia, Wenjing Sun. Establish six-gene prognostic model for glioblastoma based on multi-omics data of TCGA database [J]. Hereditas(Beijing), 2021, 43(7): 665-679. |
[12] | Youhong Chen, Wenhao Yang, Chao Ni. Using esophagus organoid to explore the role of c-Myc in esophageal cancer initiation [J]. Hereditas(Beijing), 2021, 43(6): 601-614. |
[13] | Yige Li, Dandan Zhang. Progress on functional mechanisms of colorectal cancer causal SNPs in post-GWAS [J]. Hereditas(Beijing), 2021, 43(3): 203-214. |
[14] | Yajie Wang, Shuangshuang Wu, Jiang Chu, Xiangyang Kong. Lung microbiome mediates the progression from chronic obstructive pulmonary disease to lung cancer through inflammation [J]. Hereditas(Beijing), 2021, 43(1): 30-39. |
[15] | Qin Lili, Li Yijian, Liang Zhaorui, Dai Lei, Li Wenhui, Chen Chao, Huang Yaling, Zhang Le, Liu Songming, Qiu Si, Ge Yuping, Peng Wenting, Lin Xinxin, Zhang Xiuqing, Dong Xuan, Li Bo. A method of screening highly common neoantigens with immunogenicity in colorectal cancer based on public somatic mutation library [J]. Hereditas(Beijing), 2020, 42(6): 599-612. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号