Hereditas(Beijing) ›› 2021, Vol. 43 ›› Issue (7): 629-641.doi: 10.16288/j.yczz.21-064
• Special Section: Excellent Doctoral Thesis • Previous Articles Next Articles
Shan Li1(), Yunzhi Huang1(
), Xueying Liu2, Xiangdong Fu2,3
Received:
2021-02-18
Revised:
2021-04-02
Online:
2021-07-20
Published:
2021-04-25
Contact:
Fu Xiangdong
E-mail:shanli@njau.edu.cn;2020201051@stu.njau.edu.cn
Supported by:
Shan Li, Yunzhi Huang, Xueying Liu, Xiangdong Fu. Genetic improvement of nitrogen use efficiency in crops[J]. Hereditas(Beijing), 2021, 43(7): 629-641.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Pingali PL. Green Revolution: Impacts, limits, and the path ahead. Proc Natl Acad Sci USA, 2012, 109(31):12302-12308.
doi: 10.1073/pnas.0912953109 |
[2] |
Van De Velde K, Thomas SG, Heyse F, Kaspar R, Van Der Straeten D, Rohde A. N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat Green Revolution alleles. Mol Plant, 2021, 14(4):679-687.
doi: 10.1016/j.molp.2021.01.002 |
[3] |
Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP. 'Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999, 400(6741):256-261.
doi: 10.1038/22307 |
[4] |
Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416(6882):701-702.
doi: 10.1038/416701a |
[5] |
Zhang QF. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104(42):16402-16409.
doi: 10.1073/pnas.0708013104 |
[6] |
Chandler PM, Marion-Poll A, Ellis M, Gubler F. Mutants at theSlender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol , 2002, 129(1):181-190.
pmid: 12011349 |
[7] |
Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell , 2001, 13(5):999-1010.
pmid: 11340177 |
[8] |
Ogawa M, Kusano T, Katsumi M, Sano H. Rice gibberellin-insensitive gene homolog, OsGAI, encodes a nuclear-localized protein capable of gene activation at transcriptional level. Gene , 2000, 245(1):21-29.
pmid: 10713441 |
[9] |
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YIC, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature , 2005, 437(7059):693-698.
doi: 10.1038/nature04028 |
[10] |
Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M. Structural basis for gibberellin recognition by its receptor GID1. Nature, 2008, 456(7221):520-523.
doi: 10.1038/nature07546 |
[11] |
Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19(7):2140-2155.
pmid: 17644730 |
[12] |
Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell, 2010, 22(8):2680-2696.
doi: 10.1105/tpc.110.075549 |
[13] |
Fu X, Richards DE, Ait-Ali T, Hynes LW, Ougham H, Peng J, Harberd NP. Gibberellin-mediated proteasome- dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell, 2002, 14(12):3191-3200.
doi: 10.1105/tpc.006197 |
[14] |
Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP. TheArabidopsis GAIgene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev , 1997, 11(23):3194-3205.
doi: 10.1101/gad.11.23.3194 |
[15] |
Li S, Tian YH, Wu K, Ye YF, Yu JP, Zhang JQ, Liu Q, Hu MY, Li H, Tong YP, Harberd NP, Fu XD. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018, 560(7720):595-600.
doi: 10.1038/s41586-018-0415-5 |
[16] |
Wu K, Wang SS, Song WZ, Zhang JQ, Wang Y, Liu Q, Yu JP, Ye YF, Li S, Chen JF, Zhao Y, Wang J, Wu XK, Wang MY, Zhang YJ, Liu BM, Wu YJ, Harberd NP, Fu XD. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science , 2020, 367(6478): eaaz2046.
doi: 10.1126/science.aaz2046 |
[17] |
Bergsdorf EY, Zdebik AA, Jentsch TJ. Residues important for nitrate/proton coupling in plant and mammalian CLC transporters. J Biol Chem, 2009, 284(17):11184-11193.
doi: 10.1074/jbc.M901170200 |
[18] |
MacMillan J. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul. 2001, 20(4):387-442.
doi: 10.1007/s003440010038 |
[19] |
Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang MY, Coruzzi G, Lacombe B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci, 2014, 19(1):5-9.
doi: 10.1016/j.tplants.2013.08.008 |
[20] |
Liu KH, Tsay YF. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 2003, 22(5):1005-1013.
doi: 10.1093/emboj/cdg118 |
[21] |
Léran S, Edel KH, Pervent M, Hashimoto K, Corratgé- Faillie C, Offenborn JN, Tillard P, Gojon A, Kudla J, Lacombe B. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid. Sci Signal , 2015, 8(375): ra43.
doi: 10.1126/scisignal.aaa4829 |
[22] |
Kiba T, Feria-Bourrellier AB, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H, Krapp A. TheArabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell , 2012, 24(1):245-258.
doi: 10.1105/tpc.111.092221 |
[23] |
Kotur Z, Mackenzie N, Ramesh S, Tyerman SD, Kaiser BN, Glass ADM. Nitrate transport capacity of theArabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. New Phytol , 2012, 194(3):724-731.
doi: 10.1111/nph.2012.194.issue-3 |
[24] | Li YL, Fan XR, Shen QR. The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ, 2008, 31(1):73-85. |
[25] |
Hu B, Wang W, Ou SJ, Tang JY, Li H, Che RH, Zhang ZH, Chai XY, Wang HR, Wang YQ, Liang CZ, Liu LC, Piao ZZ, Deng QY, Deng K, Xu C, Liang Y, Zhang LH, Li LG, Chu CC. Variation inNRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet , 2015, 47(7):834-838.
doi: 10.1038/ng.3337 |
[26] |
Zhang JY, Liu YX, Zhang N, Hu B, Jin T, Xu HR, Qin Y, Yan PX, Zhang XN, Guo XN, Hui J, Cao SY, Wang X, Wang C, Wang H, Qu BY, Fan GY, Yuan LX, Garrido-Oter R, Chu CC, Bai Y. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol , 2019, 37(6):676-684.
doi: 10.1038/s41587-019-0104-4 |
[27] |
Tang WJ, Ye J, Yao XM, Zhao PZ, Xuan W, Tian YL, Zhang YY, Xu S, An HZ, Chen GM, Yu J, Wu W, Ge YW, Liu XL, Li J, Zhang HZ, Zhao YQ, Yang B, Jiang XZ, Peng C, Zhou C, Terzaghi W, Wang CM, Wan JM. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019, 10(1):5279.
doi: 10.1038/s41467-019-13187-1 |
[28] |
Wang W, Hu B, Yuan DY, Liu YQ, Che RH, Hu YC, Ou SJ, Liu Y, Zhang ZH, Wang HR, Li H, Jiang ZM, Zhang ZL, Gao XK, Qiu YH, Meng XB, Liu YX, Bai Y, Liang Y, Wang YQ, Zhang LH, Li LG, Sodmergen, Jing HC, Li JY, Chu CC. Expression of the nitrate transporter geneOsNRT1.1A/OsNPF6.3confers high yield and early maturation in rice. Plant Cell , 2018, 30(3):638-651.
doi: 10.1105/tpc.17.00809 |
[29] |
Li YG, Ouyang J, Wang YY, Hu R, Xia KF, Duan J, Wang YQ, Tsay YF, Zhang MY. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci Rep, 2015, 5(1):9635.
doi: 10.1038/srep09635 |
[30] |
Lin CM, Koh S, Stacey G, Yu SM, Lin TY, Tsay YF. Cloning and functional characterization of a constitutively expressed nitrate transporter gene,OsNRT1, from rice. Plant Physiol , 2000, 122(2):379-388.
pmid: 10677431 |
[31] |
Feng HM, Yan M, Fan XR, Li BZ, Shen QR, Miller AJ, Xu GH. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot, 2011, 62(7):2319-2332.
doi: 10.1093/jxb/erq403 |
[32] |
Liu XQ, Huang DM, Tao JY, Miller AJ, Fan XR, Xu GH. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. New Phytol, 2014, 204(1):74-80.
doi: 10.1111/nph.2014.204.issue-1 |
[33] |
Fan XR, Tang Z, Tan YW, Zhang Y, Luo BB, Yang M, Lian XM, Shen QR, Miller AJ, Xu GH. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA, 2016, 113(26):7118-7123.
doi: 10.1073/pnas.1525184113 |
[34] |
Feng HM, Li B, Zhi Y, Chen JG, Li R, Xia XD, Xu GH, Fan XR. Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. Plant Cell Rep, 2017, 36(8):1287-1296.
doi: 10.1007/s00299-017-2153-9 |
[35] |
González-Ballester D, Camargo A, Fernández E. Ammonium transporter genes in Chlamydomonas: the nitrate-specific regulatory gene Nit2 is involved in Amt1;1 expression. Plant Mol Biol , 2004, 56(6):863-878.
pmid: 15821986 |
[36] |
Sonoda Y, Ikeda A, Saiki S, von Wirén N, Yamaya T, Yamaguchi J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol , 2003, 44(7):726-734.
doi: 10.1093/pcp/pcg083 |
[37] |
Lejay L, Gansel X, Cerezo M, Tillard P, Müller C, Krapp A, von Wirén N, Daniel-Vedele F, Gojon A. Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell, 2003, 15(9):2218-2232.
doi: 10.1105/tpc.013516 |
[38] |
Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell , 1999, 11(5):937-948.
pmid: 10330477 |
[39] |
Sohlenkamp C, Shelden M, Howitt S, Udvardi M. Characterization ofArabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett , 2000, 467(2-3):273-278.
pmid: 10675553 |
[40] |
Yuan LX, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wirén N. The organization of high-affinity ammonium uptake inArabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell , 2007, 19(8):2636-2652.
doi: 10.1105/tpc.107.052134 |
[41] |
Li C, Tang Z, Wei J, Qu HY, Xie YJ, Xu GH. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. J Genet Genomics, 2016, 43(11):639-649.
doi: 10.1016/j.jgg.2016.11.001 |
[42] |
Gaur VS, Singh US, Gupta AK, Kumar A. Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes. Mol Biol Rep, 2012, 39(3):2233-2241.
doi: 10.1007/s11033-011-0972-2 |
[43] |
Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot, 2010, 105(7):1141-1157.
doi: 10.1093/aob/mcq028 |
[44] |
Bao A, Zhao ZQ, Ding GD, Shi L, Xu FS, Cai HM. Accumulated expression level of cytosolic glutamine synthetase 1 gene (OsGS1;1 or OsGS1;2) alter plant development and the carbon-nitrogen metabolic status in rice. PLoS One , 2014, 9(4):e95581.
doi: 10.1371/journal.pone.0095581 |
[45] |
Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J, 2005, 42(5):641-651.
pmid: 15918879 |
[46] |
Wallsgrove RM, Turner JC, Hall NP, Kendall AC, Bright SW. Barley mutants lacking chloroplast glutamine synthetase-biochemical and genetic analysis. Plant Physiol, 1987, 83(1):155-158.
pmid: 16665193 |
[47] | Tamura W, Kojima S, Toyokawa A, Watanabe H, Tabuchi- Kobayashi M, Hayakawa T, Yamaya T. Disruption of a novel NADH-Glutamate synthase2 gene caused marked reduction in spikelet number of rice. Front Plant Sci, 2011, 2:57. |
[48] |
Konishi M, Yanagisawa S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun , 2013, 4:1617.
doi: 10.1038/ncomms2621 pmid: 23511481 |
[49] |
Liu KH, Niu YJ, Konishi M, Wu Y, Du H, Sun Chung H, Li L, Boudsocq M, McCormack M, Maekawa S, Ishida T, Zhang C, Shokat K, Yanagisawa S, Sheen J. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature, 2017, 545(7654):311-316.
doi: 10.1038/nature22077 |
[50] | Araus V, Vidal EA, Puelma T, Alamos S, Mieulet D, Guiderdoni E, Gutierrez RA. Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency. Plant Physiol, 2016, 171(2):1523-1532. |
[51] | Wu YF, Yang WZ, Wei JH, Yoon H, An G. Transcription factor OsDOF18 controls ammonium uptake by inducing ammonium transporters in rice roots. Mol Cells, 2017, 40(3):178-185. |
[52] |
Yang J, Wang M, Li W, He X, Teng W, Ma W, Zhao X, Hu M, Li H, Zhang Y, Tong Y. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnol J, 2019, 17(9):1823-1833.
doi: 10.1111/pbi.v17.9 |
[53] |
Gao YH, Xu ZP, Zhang LJ, Li SC, Wang SG, Yang HL, Liu XL, Zeng DL, Liu QQ, Qian Q, Zhang BC, Zhou YH. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nat Commun, 2020, 11(1):5219.
doi: 10.1038/s41467-020-19019-x |
[54] |
Varala K, Marshallcolón A, Cirrone J, Brooks MD, Pasquino AV, Léran S, Mittal S, Rock TM, Edwards MB, Kim GJ, Ruffel S, Mccombie WR, Shasha D, Coruzzi GM. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc Natl Acad Sci USA, 2018, 115(25):6494-6499.
doi: 10.1073/pnas.1721487115 |
[55] |
Gaudinier A, Rodriguez-Medina J, Zhang L, Olson A, Liseron-Monfils C, Bågman AM, Foret J, Abbitt S, Tang M, Li B, Runcie DE, Kliebenstein DJ, Shen B, Frank MJ, Ware D, Brady SM. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature, 2018, 563(7730):259-264.
doi: 10.1038/s41586-018-0656-3 |
[56] |
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 2014, 15(8):509-524.
doi: 10.1038/nrm3838 |
[57] |
Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD. Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA, 2008, 105(2):803-808.
doi: 10.1073/pnas.0709559105 |
[58] |
Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture inArabidopsis thaliana. Proc Natl Acad Sci USA , 2010, 107(9):4477-4482.
doi: 10.1073/pnas.0909571107 |
[59] |
Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR. Identification of nutrient-responsiveArabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol , 2009, 150(3):1541-1555.
doi: 10.1104/pp.109.139139 |
[60] |
Yan YS, Wang HC, Hamera S, Chen XY, Fang RX. miR444a has multiple functions in the rice nitrate- signaling pathway. Plant J, 2014, 78(1):44-55.
doi: 10.1111/tpj.2014.78.issue-1 |
[61] |
Lin WY, Lin YY, Chiang SF, Syu C, Hsieh LC, Chiou TJ. Evolution of microRNA827 targeting in the plant kingdom. New Phytol, 2018, 217(4):1712-1725.
doi: 10.1111/nph.14938 |
[62] |
Fukaki H, Tasaka M. Hormone interactions during lateral root formation. Plant Mol Biol, 2009, 69(4):437-449.
doi: 10.1007/s11103-008-9417-2 |
[63] |
Zhang X, Cui YN, Yu M, Su BD, Gong W, Baluška F, Komis G, Šamaj J, Shan XY, Lin JX. Phosphorylation- mediated dynamics of nitrate transceptor NRT1.1 regulate auxin flux and nitrate signaling in lateral root growth. Plant Physiol, 2019, 181(2):480-498.
doi: 10.1104/pp.19.00346 pmid: 31431511 |
[64] |
Ma WY, Li JJ, Qu BY, He X, Zhao XQ, Li B, Fu XD, Tong YP. Auxin biosynthetic geneTAR2is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J , 2014, 78(1):70-79.
doi: 10.1111/tpj.2014.78.issue-1 |
[65] |
Zhang SY, Zhu LM, Shen CB, Ji Z, Zhang HP, Zhang T, Li Y, Yu JP, Yang N, He YB, Tian YN, Wu K, Wu JY, Harberd NP, Zhao YD, Fu XD, Wang SK, Li S. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. Plant Cell, 2021, 33(3):566-580.
doi: 10.1093/plcell/koaa037 |
[66] |
Signora L, De Smet I, Foyer CH, Zhang H. ABA plays a central role in mediating the regulatory effects of nitrate on root branching inArabidopsis. Plant J , 2001, 28(6):655-662.
pmid: 11851911 |
[67] |
Liu YQ, Wang HR, Jiang ZM, Wang W, Xu RN, Wang QH, Zhang ZH, Li AF, Liang Y, Ou SJ, Liu XJ, Cao SY, Tong HN, Wang YH, Zhou F, Liao H, Hu B, Chu CC. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature. 2021, 590(7847):600-605.
doi: 10.1038/s41586-020-03091-w |
[68] |
Wu XY, Ding CH, Baerson SR, Lian FZ, Lin XH, Zhang L Q, Wu CF, Hwang SY, Zeng R, Song YY. The roles of jasmonate (JA) signaling in nitrogen uptake and allocation in rice ( Oryza sativaL.). Plant Cell Environ , 2019, 42(2):659-672.
doi: 10.1111/pce.v42.2 |
[69] |
Moll RH, Kamprath EJ, Jackson WA. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 1982, 74(3):562-564.
doi: 10.2134/agronj1982.00021962007400030037x |
[70] |
Sasakawa H, Yamamoto Y. Comparison of the uptake of nitrate and ammonium by rice seedlings influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors. Plant Physiol, 1978, 62(4):665-669.
pmid: 16660579 |
[71] |
Gao ZY, Wang YF, Chen G, Zhang AP, Yang SL, Shang LG, Wang DY, Ruan BP, Liu CL, Jiang HZ, Dong GJ, Zhu L, Hu J, Zhang GH, Zeng DL, Guo LB, Xu GH, Teng S, Harberd NP, Qian Q. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun , 2019, 10(1):5207.
doi: 10.1038/s41467-019-13110-8 |
[72] |
Chen JG, Zhang Y, Tan YW, Zhang M, Zhu LL, Xu GH, Fan XR. Agronomic nitrogen-use efficiency of rice can be increased by drivingOsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnol J , 2016, 14(8):1705-1715.
doi: 10.1111/pbi.2016.14.issue-8 |
[73] |
Fang ZM, Xia KF, Yang X, Grotemeyer MS, Meier S, Rentsch D, Xu XL, Zhang MY. Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnol J, 2013, 11(4):446-458.
doi: 10.1111/pbi.2013.11.issue-4 |
[74] |
Fang ZM, Bai GX, Huang WT, Wang ZX, Wang XL, Zhang MY. The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. Front Plant Sci, 2017, 8:1338.
doi: 10.3389/fpls.2017.01338 |
[75] |
Huang WT, Bai GX, Wang J, Zhu W, Zeng QS, Lu K, Sun SY, Fang ZM. Two Splicing Variants of OsNPF7.7 Regulate shoot branching and nitrogen utilization efficiency in rice. Front Plant Sci, 2018, 9:300.
doi: 10.3389/fpls.2018.00300 |
[76] |
Yu J, Xuan W, Tian YL, Fan L, Sun J, Tang WJ, Chen GM, Wang BX, Liu Y, Wu W, Liu XL, Jiang XZ, Zhou C, Dai ZY, Xu DY, Wang CM, Wan JM. Enhanced OsNLP4- OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol J, 2021, 19(1):167-176.
doi: 10.1111/pbi.v19.1 |
[77] | Chen KE, Chen HY, Tseng CS, Tsay YF. Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nat Plants, 2020, (9):1126-1135. |
[78] |
Ranathunge K, El-Kereamy A, Gidda S, Bi YM, Rothstein SJ. AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions. J Exp Bot , 2014, 65(4):965-979.
doi: 10.1093/jxb/ert458 pmid: 24420570 |
[79] |
Brauer EK, Rochon A, Bi YM, Bozzo GG, Rothstein SJ, Shelp BJ. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiol Plant, 2011, 141(4):361-372.
doi: 10.1111/ppl.2011.141.issue-4 |
[80] |
Sun HY, Qian Q, Wu K, Luo JJ, Wang SS, Zhang CW, Ma YF, Liu Q, Huang XZ, Yuan QB, Han RX, Zhao M, Dong GJ, Guo LB, Zhu XD, Gou ZH, Wang W, Wu YJ, Lin HX, Fu XD. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet, 2014, 46(6):652-656.
doi: 10.1038/ng.2958 |
[81] |
Wang Q, Nian JQ, Xie XZ, Yu H, Zhang J, Bai JT, Dong GJ, Hu J, Bai B, Chen LC, Xie QJ, Feng J, Yang XL, Peng JL, Chen F, Qian Q, Li JY, Zuo JR. Genetic variations inARE1 mediate grain yield by modulating nitrogen utilization in rice. Nat Commun , 2018, 9(1):735.
doi: 10.1038/s41467-017-02781-w |
[1] | Zhong Bian, Dongping Cao, Wenshu Zhuang, Shuwei Zhang, Qiaoquan Liu, Lin Zhang. Revelation of rice molecular design breeding: the blend of tradition and modernity [J]. Hereditas(Beijing), 2023, 45(9): 718-740. |
[2] | Xiangdong Liu, Jinwen Wu, Zijun Lu, Muhammad Qasim Shahid. Autotetraploid rice: challenges and opportunities [J]. Hereditas(Beijing), 2023, 45(9): 781-792. |
[3] | Zhenwu Zheng, Hongyuan Zhao, Xiaoya Liang, Yijun Wang, Chihang Wang, Gaoyan Gong, Jinyan Huang, Guiquan Zhang, Shaokui Wang, Zupei Liu. qGL3.4 controls kernel size and plant architecture in rice [J]. Hereditas(Beijing), 2023, 45(9): 835-844. |
[4] | Mingjiang Chen, Guifu Liu, Yeqing Xiao, Hong Yu, Jiayang Li. Breeding of ZhongKeFaZaoGeng1 by molecular design [J]. Hereditas(Beijing), 2023, 45(9): 829-834. |
[5] | Xiaoping Lian, Guangfu Huang, Yujiao Zhang, Jing Zhang, Fengyi Hu, Shilai Zhang. The discovery and utilization of favorable genes in Oryza longistaminata [J]. Hereditas(Beijing), 2023, 45(9): 765-780. |
[6] | Yongqiang Liu, Weiwei Li, Xinyu Liu, Chengcai Chu. Molecular mechanism of tillering response to nitrogen in rice [J]. Hereditas(Beijing), 2023, 45(5): 367-378. |
[7] | Changquan Zhang, Linhao Feng, Minghong Gu, Qiaoquan Liu. Progress on inheritance and gene cloning for rice grain quality in Jiangsu province [J]. Hereditas(Beijing), 2021, 43(5): 425-441. |
[8] | Cailin Wang, Yadong Zhang, Chunfang Zhao, Xiaodong Wei, Shu Yao, Lihui Zhou, Zhen Zhu, Tao Chen, Qingyong Zhao, Ling Zhao, Kai Lu, Wenhua Liang. Inheritance and breeding of japonica rice with good eating quality in Jiangsu province [J]. Hereditas(Beijing), 2021, 43(5): 442-458. |
[9] | Hang Dai, Yan Li, Shunchun Liu, Lei Lin, Juanyan Wu, Zhijie Zhang, Qichun Peng, Nan Li, Xiangqian Zhang. Effect of extensin-like OsPEX1 on pollen fertility in rice [J]. Hereditas(Beijing), 2021, 43(3): 271-279. |
[10] | Lingyue Yan, Haojian Zhang, Yuqing Zheng, Yunqi Cong, Citao Liu, Fan Fan, Cheng Zheng, Guilong Yuan, Gen Pan, Dingyang Yuan, Meijuan Duan. Transcription factor OsMADS25 improves rice tolerance to cold stress [J]. Hereditas(Beijing), 2021, 43(11): 1078-1087. |
[11] | Yali Hu, Rui Dai, Yongxin Liu, Jingying Zhang, Bin Hu, Chengcai Chu, Huaibo Yuan, Yang Bai. Analysis of rice root bacterial microbiota of Nipponbare and IR24 [J]. Hereditas(Beijing), 2020, 42(5): 506-518. |
[12] | Guiquan Zhang. The platform of breeding by design based on the SSSL library in rice [J]. Hereditas(Beijing), 2019, 41(8): 754-760. |
[13] | Yongyao Xie,Jintao Tang,Bowen Yang,Jun Hu,Yao-Guang Liu,Letian Chen. Current advance on molecular genetic regulation of rice fertility [J]. Hereditas(Beijing), 2019, 41(8): 703-715. |
[14] | Citao Liu, Wei Wang, Bigang Mao, Chengcai Chu. Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects [J]. Hereditas(Beijing), 2018, 40(3): 171-185. |
[15] | Dewei Yang, Xianghua Zheng, Chaoping Cheng, Ning Ye, Fenghuang Huang, Xinfu Ye. Mapping and cloning of GAD1-2 for long awn using CSSLs in rice (Oryza sativa L.) [J]. Hereditas(Beijing), 2018, 40(12): 1101-1111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号