Hereditas(Beijing) ›› 2023, Vol. 45 ›› Issue (8): 669-683.doi: 10.16288/j.yczz.23-043
• Research Article • Previous Articles Next Articles
Weize Kong(), Yishi Liu, Xiaodong Gao(
), Morihisa Fujita(
)
Received:
2023-03-03
Revised:
2023-05-20
Online:
2023-08-20
Published:
2023-05-31
Contact:
Xiaodong Gao,Morihisa Fujita
E-mail:2455215827@qq.com;mfujita@gifu-u.ac.jp;xdgao@ipe.ac.cn
Supported by:
Weize Kong, Yishi Liu, Xiaodong Gao, Morihisa Fujita. Comprehensive in silico analysis of glycosylphosphatidylinositol- anchored protein (GPI-AP) related genes expression profiles in human normal and cancer tissues[J]. Hereditas(Beijing), 2023, 45(8): 669-683.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Xia MQ, Hale G, Lifely MR, Ferguson MA, Campbell D, Packman L, Waldmann H. Structure of the CAMPATH-1 antigen, a glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally good target for complement lysis. Biochem J, 1993, 293(Pt 3): 633-640.
doi: 10.1042/bj2930633 |
[2] |
Legan PK, Rau A, Keen JN, Richardson GP. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J Biol Chem, 1997, 272(13): 8791-8801.
doi: 10.1074/jbc.272.13.8791 pmid: 9079715 |
[3] |
Hazenbos WLW, Clausen BE, Takeda J, Kinoshita T. GPI-anchor deficiency in myeloid cells causes impaired FcgammaR effector functions. Blood, 2004, 104(9): 2825-2831.
doi: 10.1182/blood-2004-02-0671 pmid: 15238423 |
[4] |
Kawagoe K, Kitamura D, Okabe M, Taniuchi I, Ikawa M, Watanabe T, Kinoshita T, Takeda J. Glycosylphosphatidylinositol-anchor-deficient mice: implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. Blood, 1996, 87(9): 3600-3606.
pmid: 8611683 |
[5] |
Pittet M, Conzelmann A. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta, 2007, 1771(3): 405-420.
pmid: 16859984 |
[6] |
Ueda Y, Yamaguchi R, Ikawa M, Okabe M, Morii E, Maeda Y, Kinoshita T. PGAP1 knock-out mice show otocephaly and male infertility. J Biol Chem, 2007, 282(42): 30373-30380.
doi: 10.1074/jbc.M705601200 pmid: 17711852 |
[7] |
Capurro M, Martin T, Shi W, Filmus J. Glypican-3 binds to Frizzled and plays a direct role in the stimulation of canonical Wnt signaling. J Cell Sci, 2014, 127(Pt 7): 1565-1575.
doi: 10.1242/jcs.140871 pmid: 24496449 |
[8] |
Capurro MI, Xiang YY, Lobe C, Filmus J. Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res, 2005, 65(14): 6245-6254.
doi: 10.1158/0008-5472.CAN-04-4244 pmid: 16024626 |
[9] | Wang DC, Gao Y, Zhang Y, Wang LF, Chen G. Glypican-3 promotes cell proliferation and tumorigenesis through up-regulation of β-catenin expression in lung squamous cell carcinoma. Biosci Rep, 2019, 39(6): BSR20181147. |
[10] |
Nakatsura T, Yoshitake Y, Senju S, Monji M, Komori H, Motomura Y, Hosaka S, Beppu T, Ishiko T, Kamohara H, Ashihara H, Katagiri T, Furukawa Y, Fujiyama S, Ogawa M, Nakamura Y, Nishimura Y. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun, 2003, 306(1): 16-25.
doi: 10.1016/S0006-291X(03)00908-2 |
[11] |
Umezu T, Shibata K, Shimaoka M, Kajiyama H, Yamamoto E, Ino K, Nawa A, Senga T, Kikkawa F. Gene silencing of glypican-3 in clear cell carcinoma of the ovary renders it more sensitive to the apoptotic agent paclitaxel in vitro and in vivo. Cancer Sci, 2010, 101(1): 143-148.
doi: 10.1111/cas.2009.101.issue-1 |
[12] | Cottereau E, Mortemousque I, Moizard MP, Bürglen L, Lacombe D, Gilbert-Dussardier B, Sigaudy S, Boute O, David A, Faivre L, Amiel J, Robertson R, Viana Ramos F, Bieth E, Odent S, Demeer B, Mathieu M, Gaillard D, Van Maldergem L, Baujat G, Maystadt I, Héron D, Verloes A, Philip N, Cormier-Daire V, Frouté MF, Pinson L, Blanchet P, Sarda P, Willems M, Jacquinet A, Ratbi I, Van Den Ende J, Lackmy-Port Lis M, Goldenberg A, Bonneau D, Rossignol S, Toutain A. Phenotypic spectrum of Simpson-Golabi-Behmel syndrome in a series of 42 cases with a mutation in GPC3 and review of the literature. Am J Med Genet C Semin Med Genet, 2013, 163c(2): 92-105. |
[13] |
Johnson B, Mahadevan D. Emerging role and targeting of carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) in human malignancies. Clin Cancer Drugs, 2015, 2(2): 100-111.
doi: 10.2174/2212697X02666150602215823 |
[14] |
Camacho-Leal P, Zhai AB, Stanners CP. A co-clustering model involving alpha5beta1 integrin for the biological effects of GPI-anchored human carcinoembryonic antigen (CEA). J Cell Physiol, 2007, 211(3): 791-802.
doi: 10.1002/jcp.20989 pmid: 17286276 |
[15] |
Huang YF, Aoki K, Akase S, Ishihara M, Liu YS, Yang GL, Kizuka Y, Mizumoto S, Tiemeyer M, Gao XD, Aoki- Kinoshita KF, Fujita M. Global mapping of glycosylation pathways in human-derived cells. Dev Cell, 2021, 56(8): 1195-1209.e7.
doi: 10.1016/j.devcel.2021.02.023 |
[16] |
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo YH, Rogers D, Brooks AN, Zhu JC, Haussler D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol, 2020, 38(6): 675-678.
doi: 10.1038/s41587-020-0546-8 pmid: 32444850 |
[17] |
UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res, 2015, 43(Database issue): D204-D212.
doi: 10.1093/nar/gku989 |
[18] |
Kinoshita T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol, 2020, 10(3): 190290.
doi: 10.1098/rsob.190290 |
[19] |
Ashida H, Hong Y, Murakami Y, Shishioh N, Sugimoto N, Kim YU, Maeda Y, Kinoshita T. Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol Biol Cell, 2005, 16(3): 1439-1448.
pmid: 15635094 |
[20] |
Ohishi K, Inoue N, Kinoshita T.PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J, 2001, 20(15): 4088-4098.
pmid: 11483512 |
[21] |
Tanaka S, Maeda Y, Tashima Y, Kinoshita T. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem, 2004, 279(14): 14256-14263.
doi: 10.1074/jbc.M313755200 pmid: 14734546 |
[22] |
Hirata T, Mishra SK, Nakamura S, Saito K, Motooka D, Takada Y, Kanzawa N, Murakami Y, Maeda Y, Fujita M, Yamaguchi Y, Kinoshita T. Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain. Nat Commun, 2018, 9(1): 405.
doi: 10.1038/s41467-017-02799-0 pmid: 29374258 |
[23] |
Watanabe R, Murakami Y, Marmor MD, Inoue N, Maeda Y, Hino J, Kangawa K, Julius M, Kinoshita T.Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J, 2000, 19(16): 4402-4411.
pmid: 10944123 |
[24] |
Kajiwara K, Watanabe R, Pichler H, Ihara K, Murakami S, Riezman H, Funato K. Yeast ARV1 is required for efficient delivery of an early GPI intermediate to the first mannosyltransferase during GPI assembly and controls lipid flow from the endoplasmic reticulum. Mol Biol Cell, 2008, 19(5): 2069-2082.
doi: 10.1091/mbc.E07-08-0740 pmid: 18287539 |
[25] |
Miyata T, Takeda J, Iida Y, Yamada N, Inoue N, Takahashi M, Maeda K, Kitani T, Kinoshita T. The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science, 1993, 259(5099): 1318-1320.
doi: 10.1126/science.7680492 pmid: 7680492 |
[26] |
Inoue N, Watanabe R, Takeda J, Kinoshita T.PIG-C, one of the three human genes involved in the first step of glycosylphosphatidylinositol biosynthesis is a homologue of Saccharomyces cerevisiae GPI2. Biochem Biophys Res Commun, 1996, 226(1): 193-199.
doi: 10.1006/bbrc.1996.1332 |
[27] |
Kamitani T, Chang HM, Rollins C, Waneck GL, Yeh ET. Correction of the class H defect in glycosylphosphatidylinositol anchor biosynthesis in Ltk- cells by a human cDNA clone. J Biol Chem, 1993, 268(28): 20733-20736.
pmid: 8407896 |
[28] |
Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J, Kinoshita T. The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J, 1998, 17(4): 877-885.
pmid: 9463366 |
[29] |
Murakami Y, Siripanyaphinyo U, Hong Y, Tashima Y, Maeda Y, Kinoshita T. The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol Biol Cell, 2005, 16(11): 5236-5246.
pmid: 16162815 |
[30] |
Fujihara Y, Ikawa M. GPI-AP release in cellular, developmental, and reproductive biology. J Lipid Res, 2016, 57(4): 538-545.
doi: 10.1194/jlr.R063032 pmid: 26593072 |
[31] |
Knaus A, Kortüm F, Kleefstra T, Stray-Pedersen A, Đukić D, Murakami Y, Gerstner T, van Bokhoven H, Iqbal Z, Horn D, Kinoshita T, Hempel M, Krawitz PM. Mutations in PIGU impair the function of the GPI transamidase complex, causing severe intellectual disability, epilepsy, and brain anomalies. Am J Hum Genet, 2019, 105(2): 395-402.
doi: S0002-9297(19)30234-4 pmid: 31353022 |
[32] |
Paprocka J, Hutny M, Hofman J, Tokarska A, Kłaniewska M, Szczałuba K, Stembalska A, Jezela-Stanek A, Śmigiel R. Spectrum of neurological symptoms in glycosylphosphatidylinositol biosynthesis defects: systematic review. Front Neurol, 2022, 12: 758899.
doi: 10.3389/fneur.2021.758899 |
[33] |
Murakami Y, Tawamie H, Maeda Y, Büttner C, Buchert R, Radwan F, Schaffer S, Sticht H, Aigner M, Reis A, Kinoshita T, Jamra RA. Null mutation in PGAP1 impairing Gpi-anchor maturation in patients with intellectual disability and encephalopathy. PLoS Genet, 2014, 10(5): e1004320.
doi: 10.1371/journal.pgen.1004320 |
[34] |
Granzow M, Paramasivam N, Hinderhofer K, Fischer C, Chotewutmontri S, Kaufmann L, Evers C, Kotzaeridou U, Rohrschneider K, Schlesner M, Sturm M, Pinkert S, Eils R, Bartram CR, Bauer P, Moog U. Loss of function of PGAP1 as a cause of severe encephalopathy identified by whole exome sequencing: lessons of the bioinformatics pipeline. Mol Cell Probes, 2015, 29(5): 323-329.
doi: 10.1016/j.mcp.2015.05.012 |
[35] |
Davids M, Menezes M, Guo YR, McLean SD, Hakonarson H, Collins F, Worgan L, Billington CJ, Maric I, Littlejohn RO, Onyekweli T, Members Of The U, Adams DR, Tifft CJ, Gahl WA, Wolfe LA, Christodoulou J, Malicdan MCV. Homozygous splice-variants in human ARV1 cause GPI-anchor synthesis deficiency. Mol Genet Metab, 2020, 130(1): 49-57.
doi: S1096-7192(20)30055-X pmid: 32165008 |
[36] |
Litwack ED, Babey R, Buser R, Gesemann M, O'Leary DDM. Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization. Mol Cell Neurosci, 2004, 25(2): 263-274.
pmid: 15019943 |
[37] |
Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch UK, Philips MA, Rossner MJ, Mann M, Simons M. Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci, 2015, 18(12): 1819-1831.
doi: 10.1038/nn.4160 pmid: 26523646 |
[38] |
Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He ZG. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 2002, 417(6892): 941-944.
doi: 10.1038/nature00867 |
[39] |
Vourc'h P, Dessay S, Mbarek O, Marouillat Védrine S, Müh JP, Andres C. The oligodendrocyte-myelin glycoprotein gene is highly expressed during the late stages of myelination in the rat central nervous system. Brain Res Dev Brain Res, 2003, 144(2): 159-168.
doi: 10.1016/S0165-3806(03)00167-6 |
[40] |
Lin SR, Yu IS, Huang PH, Tsai CW, Lin SW. Chimaeric mice with disruption of the gene coding for phosphatidylinositol glycan class A (Pig-a) were defective in embryogenesis and spermatogenesis. Br J Haematol, 2000, 110(3): 682-693.
doi: 10.1046/j.1365-2141.2000.02209.x |
[41] |
Fujihara Y, Okabe M, Ikawa M. GPI-anchored protein complex, LY6K/TEX101, is required for sperm migration into the oviduct and male fertility in mice. Biol Reprod, 2014, 90(3): 60.
doi: 10.1095/biolreprod.113.112888 pmid: 24501175 |
[42] |
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci, 2021, 78(4): 1233-1261.
doi: 10.1007/s00018-020-03656-y pmid: 33057840 |
[43] |
Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen ZY, Sen DR, Kurachi M, Barnitz RA, Bartman C, Bengsch B, Huang AC, Schenkel JM, Vahedi G, Haining WN, Berger SL, Wherry EJ. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science, 2016, 354(6316): 1160-1165.
pmid: 27789795 |
[44] |
Chikaraishi K, Takenobu H, Sugino RP, Mukae K, Akter J, Haruta M, Kurosumi M, Endo TA, Koseki H, Shimojo N, Ohira M, Kamijo T. CFC1 is a cancer stemness-regulating factor in neuroblastoma. Oncotarget, 2017, 8(28): 45046-45059.
doi: 10.18632/oncotarget.18464 pmid: 28620148 |
[45] |
Izzi L, Lévesque M, Morin S, Laniel D, Wilkes BC, Mille F, Krauss RS, McMahon AP, Allen BL, Charron F. Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev Cell, 2011, 20(6): 788-801.
doi: 10.1016/j.devcel.2011.04.017 pmid: 21664577 |
[46] |
Zamorano A, Mellström B, Vergara P, Naranjo JR, Segovia J. Glial-specific retrovirally mediated gas1 gene expression induces glioma cell apoptosis and inhibits tumor growth in vivo. Neurobiol Dis, 2004, 15(3): 483-491.
pmid: 15056455 |
[47] |
Shi W, Filmus J. Glypican-6 and Glypican-4 stimulate embryonic stomach growth by regulating Hedgehog and noncanonical Wnt signaling. Dev Dyn, 2022, 251(12): 2015-2028.
doi: 10.1002/dvdy.v251.12 |
[48] |
Ng W, Pébay A, Drummond K, Burgess A, Kaye AH, Morokoff A. Complexities of lysophospholipid signalling in glioblastoma. J Clin Neurosci, 2014, 21(6): 893-898.
doi: 10.1016/j.jocn.2014.02.013 pmid: 24746442 |
[1] | Qingyu Sun, Yang Zhou, Lijuan Du, Mengke Zhang, Jiale Wang, Yuanyuan Ren, Fang Liu. Analysis between macrophage-related genes with prognosis and tumor microenvironment in non-small cell lung cancer [J]. Hereditas(Beijing), 2023, 45(8): 684-699. |
[2] | Chunhui Ma, Haixu Hu, Lijuan Zhang, Yi Liu, Tianyi Liu. Establishment and verification of a digital PCR assay for the detection of CK19 expression in quantitative analysis of circulating tumor cell [J]. Hereditas(Beijing), 2023, 45(3): 250-260. |
[3] | Dong Chang, Xiangxiang Liu, Rui Liu, Jianwei Sun. The role and regulatory mechanism of FSCN1 in breast tumorigenesis and progression [J]. Hereditas(Beijing), 2023, 45(2): 115-127. |
[4] | Sihan Qi, Qilin Wang, Junyou Zhang, Qian Liu, Chunyan Li. The regulatory mechanisms by enhancers during cancer initiation and progression [J]. Hereditas(Beijing), 2022, 44(4): 275-288. |
[5] | Changgui Lei, Xueyuan Jia, Wenjing Sun. Establish six-gene prognostic model for glioblastoma based on multi-omics data of TCGA database [J]. Hereditas(Beijing), 2021, 43(7): 665-679. |
[6] | Youhong Chen, Wenhao Yang, Chao Ni. Using esophagus organoid to explore the role of c-Myc in esophageal cancer initiation [J]. Hereditas(Beijing), 2021, 43(6): 601-614. |
[7] | Yige Li, Dandan Zhang. Progress on functional mechanisms of colorectal cancer causal SNPs in post-GWAS [J]. Hereditas(Beijing), 2021, 43(3): 203-214. |
[8] | Yajie Wang, Shuangshuang Wu, Jiang Chu, Xiangyang Kong. Lung microbiome mediates the progression from chronic obstructive pulmonary disease to lung cancer through inflammation [J]. Hereditas(Beijing), 2021, 43(1): 30-39. |
[9] | Qian Liu, Chunyan Li. The identification of enhancers and its application in cancer studies [J]. Hereditas(Beijing), 2020, 42(9): 817-831. |
[10] | Qin Lili, Li Yijian, Liang Zhaorui, Dai Lei, Li Wenhui, Chen Chao, Huang Yaling, Zhang Le, Liu Songming, Qiu Si, Ge Yuping, Peng Wenting, Lin Xinxin, Zhang Xiuqing, Dong Xuan, Li Bo. A method of screening highly common neoantigens with immunogenicity in colorectal cancer based on public somatic mutation library [J]. Hereditas(Beijing), 2020, 42(6): 599-612. |
[11] | Huxing Chen, Lei Xu, Jing Li, Zheng Guo, Lu Ao. The development of a general drug resistance score model based on MIC50 related gene pairs in colorectal cancer cell lines [J]. Hereditas(Beijing), 2020, 42(6): 577-585. |
[12] | Qiang Zhang, Mingliang Gu. Single-cell sequencing and its application in breast cancer [J]. Hereditas(Beijing), 2020, 42(3): 250-268. |
[13] | Xinyuan Wang, Yu Zhang, Nan Yang, He Cheng, Yujie Sun. DNMT3a mediates paclitaxel-induced abnormal expression of LINE-1 by increasing the intragenic methylation [J]. Hereditas(Beijing), 2020, 42(1): 100-111. |
[14] | Huanzi Lu,Dikan Wang,Zhi Wang. Correlation analysis of the prognosis of HPV positive oropharyngeal cancer patients with T cell infiltration and neoantigen load [J]. Hereditas(Beijing), 2019, 41(8): 725-735. |
[15] | Qichao Yu,Bin Song,Xuanxuan Zou,Ling Wang,Dequan Liu,Bo Li,Kun Ma. Analysis of normal tissues adjacent to the tumour-specific expressed genes in breast cancer [J]. Hereditas(Beijing), 2019, 41(7): 625-633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号