[1] | Elser JJ, Acquisti C, Kumar S.Stoichiogenomics: the evolutionary ecology of macromolecular elemental composition. Trends Ecol Evol, 2011, 26(1): 38-44. | [2] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ.Biological stoichiometry from genes to ecosystems. Ecol Lett, 2000, 3(6): 540-550. | [3] | Zeng DP, Jiang LL, Zeng CS, Wang WQ, Wang C.Reviews on the ecological stoichiometry characteristics and its applications. Acta Ecol Sin, 2013, 33(18): 5484-5492. | [3] | 曾冬萍, 蒋利玲, 曾从盛, 王维奇, 王纯. 生态化学计量学特征及其应用研究进展. 生态学报, 2013, 33(18): 484-5492. | [4] | Li ML, Shi LM, Li ZL, Yu RQ.Chemometrics study and application. Anal Lab, 1991, 10(2): 55-58. | [4] | 李梦龙, 石乐明, 李志良, 俞汝勤. 化学计量学研究及其应用. 分析实验室, 1991, 10(2): 55-58. | [5] | Gutteridge A, Pir P, Castrillo JI, Charles PD, Lilley KS, Oliver SG.Nutrient control of eukaryote cell growth: a systems biology study in yeast. BMC Biol, 2010, 8: 68. | [6] | Francois CM, Duret L, Simon L, Mermillod-Blondin F, Malard F, Konecny-Dupré L, Planel R, Penel S, Douady CJ, Lefébure T.No evidence that nitrogen limitation influences the elemental composition of isopod transcriptomes and proteomes. Mol Biol Evol, 2016, 33(10): 2605-2620. | [7] | Secco D, Whelan J.Toward deciphering the genome-wide transcriptional responses of rice to phosphate starvation and recovery. Plant Signal Behav, 2014, 9(4): e28319. | [8] | Acquisti C, Kleffe J, Collins S.Oxygen content of transmembrane proteins over macroevolutionary time scales. Nature, 2007, 445(7123): 47-52. | [9] | Zhang YJ, Yang CL, Hao YJ, Li Y, Chen B, Wen JF.Macroevolutionary trends of atomic composition and related functional group proportion in eukaryotic and prokaryotic proteins. Gene, 2014, 534(2): 163-168. | [10] | Stamati K, Mudera V, Cheema U.Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering. J Tissue Eng, 2011, 2(1): 2041731411432365. | [11] | Baudouin-Cornu P, Surdin-Kerjan Y, Marlière P, Thomas D.Molecular evolution of protein atomic composition. Science, 2001, 293(5528): 297-300. | [12] | Bragg JG, Wagner A.Protein material costs: single atoms can make an evolutionary difference. Trends Genet, 2009, 25(1): 5-8. | [13] | Elser JJ, Fagan WF, Subramanian S, Kumar S.Signatures of ecological resource availability in the animal and plant proteomes. Mol Biol Evol, 2006, 23(10): 1946-1951. | [14] | Carlson RP.Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics, 2007, 23(10): 1258-1264. | [15] | Acquisti C, Kumar S, Elser JJ.Signatures of nitrogen limitation in the elemental composition of the proteins involved in the metabolic apparatus. Proc Biol Sci, 2009, 276(1667): 2605-2610. | [16] | Acquisti C, Elser JJ, Kumar S.Ecological nitrogen limitation shapes the DNA composition of plant genomes. Mol Biol Evol, 2009, 26(5): 953-956. | [17] | Bohlin J, Snipen L, Hardy SP, Kristoffersen AB, Lagesen K, D?nsvik T, Skjerve E, Ussery DW.Analysis of intra-genomic GC content homogeneity within prokaryotes. BMC Genomics, 2010, 11: 464. | [18] | Kang M, Wang J, Huang HW.Nitrogen limitation as a driver of genome size evolution in a group of karst plants. Sci Rep, 2015, 5: 11636. | [19] | NASA Astrobiology Institute.EPO Activity: Follow the elements EPO Formal/Informal Education and Public Outreach. , 2008-12-12. | [20] | Diz AP, Martínez-Fernández M, Rolán-Alvarez E.Proteomics in evolutionary ecology: linking the genotype with the phenotype. Mol Ecol, 2012, 21(5): 1060-1080. | [21] | Akashi H, Gojobori T.Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA, 2002, 99(6): 3695-3700. | [22] | Scheibel T, Bell S, Walke S.S. cerevisiae and sulfur: a unique way to deal with the environment. FASEB J, 1997, 11(11): 917-921. | [23] | Li N, Lv J, Niu DK.Low contents of carbon and nitrogen in highly abundant proteins: evidence of selection for the economy of atomic composition. J Mol Evol, 2009, 68(3): 248-255. | [24] | Martin W, Russell MJ.On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc B Biol Sci, 2003, 358(1429): 59-85. | [25] | Hessen DO, Jeyasingh PD, Neiman M, Weider LJ.Genome streamlining and the elemental costs of growth. Trends Ecol Evol, 2010, 25(2): 75-80. | [26] | Sterner RW, Elser JJ.Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton, NJ: Princeton University Press, 2002. | [27] | Martin JA, Wang Z.Next-generation transcriptome assembly. Nat Rev Genet, 2011, 12(10): 671-682. | [28] | Pendleton M, Sebra R, Pang AWC, Ummat A, Franzen O, Rausch T, Stütz AM, Stedman W, Anantharaman T, Hastie A, Dai H, Fritz MHY, Cao H, Cohain A, Deikus G, Durrett RE, Blanchard SC, Altman R, Chin CS, Guo Y, Paxinos EE, Korbel JO, Darnell RB, McCombie WR, Kwok PY, Mason CE, Schadt EE, Bashir A. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods, 2015, 12(8): 780-786. | [29] | DeLong EF. The microbial ocean from genomes to biomes. Nature, 2009, 459(7244): 200-206. | [30] | Riesenfeld CS, Schloss PD, Handelsman J.Metagenomics: genomic analysis of microbial communities. Annu Rev Genet, 2004, 38(1): 525-552. | [31] | Jones N.Undersea project delivers data flood. Nature, 2010, 464(7292): 1115. | [32] | Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblí?ek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappé MS, Webb EA.Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature, 2009, 458(7234): 69-72. | [33] | Lv J, Li N, Niu DK.Association between the availability of environmental resources and the atomic composition of organismal proteomes: evidence from Prochlorococcus strains living at different depths. Biochem Biophys Res Commun, 2008, 375(2): 241-246. | [34] | Burke JM, Burger JC, Chapman MA.Crop evolution: from genetics to genomics. Curr Opin Genet Dev, 2007, 17(6): 525-532. | [35] | Hecht M.Evolutionary biology. US: Springer Science & Business Media, 2012. | [36] | Qin DH, Luo Y.Global climate change causes and future trends. Impact Sci Soc, 2008, (2): 16-21. | [36] | 秦大河, 罗勇. 全球气候变化的原因和未来变化趋势. 科学对社会的影响, 2008, (2): 16-21. | [37] | Duan QY, Xia J, Miao CY, Sun QH.The uncertainty in climate change projections by global climate models. Chin J Nat, 2016, 38(3): 182-188. | [37] | 段青云, 夏军, 缪驰远, 孙巧红. 全球气候模式中气候变化预测预估的不确定性. 自然杂志, 2016, 38(3): 182-188. | [38] | Oliver PM, Adams M, Lee MS, Hutchinson MN, Doughty P.Cryptic diversity in vertebrates: molecular data double estimates of species diversity in a radiation of Australian lizards (Diplodactylus, Gekkota). Proc R Soc B Biol Sci, 2009, 276(1664): 2001-2007. | [39] | Song DX, Zhou KY.Assessing biodiversity: a heavy task. J Nanjing Normal Univ (Nat Sci), 2002, 25(2): 1-6. | [39] | 宋大祥, 周开亚. 生物多样性的评估仍是一项艰巨的工作. 南京师大学报(自然科学版), 2002, 25(2): 1-6. | [40] | Montalvo-Javé EE, Olguín-Martínez M, Hernández-Espinosa DR, Sánchez-Sevilla L, Mendieta-Condado E, Contreras-Zentella ML, O?ate-Oca?a LF, Escalante-Tatersfield T, Echegaray-Donde A, Ruiz-Molina JM, Herrera MF, Morán J, Hernández-Mu?oz R.Role of NADPH oxidases in inducing a selective increase of oxidant stress and cyclin D1 and checkpoint 1 over-expression during progression to human gastric adenocarcinoma. Eur J Cancer, 2016, 57: 50-57. | [41] | Damaghi M, Gillies R.Phenotypic changes of acid adapted cancer cells push them toward aggressiveness in their evolution in the tumor microenvironment. Cell Cycle, 2016, doi: 10.1080/15384101.2016.1231284. | [42] | Wu XY, Chen SL, Ge Md, Chen YZ.General biology. 4th ed. Beijing: China Higher Education Press, 2014. | [42] | 吴相钰, 陈守良, 葛明德, 陈阅增. 普通生物学. 第4版. 北京: 高等教育出版社, 2014. | [43] | Zhirnov V, Zadegan RM, Sandhu GS, Church GM, Hughes WL.Nucleic acid memory. Nat Mater, 2016, 15(4): 366-370. | [44] | Church GM, Gao Y, Kosuri S.Next-generation digital information storage in DNA. Science, 2012, 337(6102): 1628. | [45] | Gilbert JDJ, Acquisti C, Martinson HM, Elser JJ, Kumar S, Fagan WF.GRASP [Genomic Resource Access for Stoichioproteomics]: comparative explorations of the atomic content of 12 Drosophila proteomes. BMC Genomics, 2013, 14: 599. | [46] | Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, Crosby MA, Rasmussen MD, Roy S, Deoras AN, Ruby JG, Brennecke J, Harvard FlyBase Curators,Berkeley Drosophila GenomeProject,Hodges E,Hinrichs AS,Caspi A,Paten B,Park SW,Han MV,Maeder ML,Polansky BJ,Robson BE,Aerts S,van Helden J,Hassan B,Gilbert DG,Eastman DA,Rice M,Weir M,Hahn MW,Park Y,Dewey CN,Pachter L,Kent WJ,Haussler D,Lai EC,Bartel DP,Hannon GJ,Kaufman TC,Eisen MB,Clark AG,Smith D,Celniker SE,Gelbart WM,Kellis M. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 2007, 450(7167): 219-232. | [47] | Lotz K, Schreiber F, Wünschiers R.Nutrilyzer: a tool for deciphering atomic stoichiometry of differentially expressed paralogous proteins. J Integr Bioinform, 2012, 9(2): 196. | [48] | Buermans HPJ, den Dunnen JT. Next generation sequencing technology: Advances and applications. Biochim Biophys Acta, 2014, 1842(10): 1932-1941. | [49] | Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma FD, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A.Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 2011, 29(7): 644-652. | [50] | Zhang YJ, Hao YJ, Si FL, Ren S, Hu GY, Shen L, Chen B.The de novo transcriptome and its analysis in the worldwide vegetable pest, Delia antiqua (Diptera: Anthomyiidae). G3 (Bethesda), 2014, 4(5): 851-859. | [51] | Chen B, Zhang YJ, He ZB, Li WS, Si FL, Tang Y, He QY, Qiao L, Yan ZT, Fu WB, Che FY.De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae). Parasit Vectors, 2014, 7: 314. | [52] | Gilissen C, Hehir-Kwa JY, Thung D,van de Vorst M,van Bon BWM,Willemsen MH,Kwint M,Janssen IM,Hoischen A,Schenck A,Leach R,Klein R,Tearle R,Bo T,Pfundt R,Yntema HG,de Vries BBA,Kleefstra T,Brunner HG,Vissers LELM,Veltman JA. Genome sequencing identifies major causes of severe intellectual disability. Nature, 2014, 511(7509): 344-347. |
|