[1] | Veenhuis M, Salomons FA, Van Der Klei IJ. Peroxisome biogenesis and degradation in yeast: a structure/ function analysis. Microsc Res Tech, 2000, 51(6): 584-600. | [2] | Wanders RJA, Waterham HR. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta, 2006, 1763(12): 1707-1720. | [3] | Li L, Wang JY, Zhang Z, Wang YL, Liu MX, Jiang H, Chai RY, Mao XQ, Qiu HP, Liu FQ, Sun GH. MoPex19, which is essential for maintenance of peroxisomal structure and Woronin bodies, is required for metabolism and development in the rice blast fungus. PLoS One, 2014, 9(1): e85252. | [4] | Hu JP. Molecular basis of peroxisome division and proliferation in plants. Int Rev Cell Mol Biol, 2010, 279: 79-99. | [5] | Muench DG, Mullen RT. Peroxisome dynamics in plant cells: a role for the cytoskeleton. Plant Sci, 2003, 164(3): 307-315. | [6] | Kiel JAKW, Veenhuis M, van der Klei IJ. PEX genes in fungal genomes: common, rare or redundant. Traffic, 2006, 7(10): 1291-1303. | [7] | Holroyd C, Erdmann R. Protein translocation machineries of peroxisomes. FEBS Lett, 2001, 501(1): 6-10. | [8] | Kubo Y, Fujihara N, Harata K, Neumann U, Robin GP, O'connell R. Colletotrichum orbiculare FAM1 encodes a novel woronin body-associated Pex22 peroxin required for appressorium-mediated plant infection. mBio, 2015, 6(5): e01305-15. | [9] | Wang JY, Li L, Zhang Z, Qiu HP, Li DM, Fang Y, Jiang H, Chai R, Mao XQ, Wang YL, Sun GC. One of three Pex11 family members is required for peroxisomal proliferation and full virulence of the rice blast fungus Magnaporthe oryzae. PLoS One, 2015, 10(7): e0134249. | [10] | Hynes MJ, Murray SL, Khew GS, Davis MA. Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in Aspergillus nidulans. Genetics, 2008, 178(3): 1355-1369. | [11] | Managadze D, Würtz C, Wiese S, Schneider M, Girzalsky W, Meyer HE, Erdmann R, Warscheid B, Rottensteiner H. Identification of PEX33, a novel component of the peroxisomal docking complex in the filamentous fungus Neurospora crassa. Eur J Cell Biol, 2010, 89(12): 955-964. | [12] | Smith JJ, Aitchison JD. Peroxisomes take shape. Nat Rev Mol Cell Biol, 2013, 14(12): 803-817. | [13] | Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Dev Cell, 2003, 5(4): 539-545. | [14] | Titorenko VI, Terlecky SR. Peroxisome metabolism and cellular aging. Traffic, 2011, 12(3): 252-259. | [15] | Liu MX, Wang JY, Sun GC. Key genes in peroxisome biogenesis and degradation in Magnaporthe oryzae. Chin J Biochem Mol Biol, 2014, 30(6): 554-564. | [15] | 刘毛欣, 王教瑜, 孙国昌. 稻瘟病菌过氧化物酶体产生与降解的关键基因. 中国生物化学与分子生物学报, 2014, 30(6): 554-564. | [16] | Purdue PE, Lazarow PB. Pex18p is constitutively degraded during peroxisome biogenesis. J Biol Chem, 2001, 276(50): 47684-47689. | [17] | Hettema EH, Erdmann R, van der Klei I, Veenhuis M. Evolving models for peroxisome biogenesis. Curr Opin Cell Biol, 2014, 29: 25-30. | [18] | Goh J, Jeon J, Kim KS, Park J, Park SY, Lee YH. The PEX7-mediated peroxisomal import system is required for fungal development and pathogenicity in Magnaporthe oryzae. PLoS One, 2011, 6(12): e28220. | [19] | Wang JY, Zhen Z, Wang YL, Li L, Chai RY, Mao XQ, Jiang H, Qiu HP, Du XF, Lin FC, Sun GH. PTS1 peroxisomal import pathway plays shared and distinct roles to PTS2 pathway in development and pathogenicity of. Magnaporthe oryzae. PLoS One, 2013, 8(2): e55554. | [20] | Kiel JAKW, van der Klei IJ. Proteins involved in microbody biogenesis and degradation in Aspergillus nidulans. Fungal Genet Biol, 2009, 46(1 Suppl.): S62-S71. | [21] | Li L, Wang JY, Chen HL, Chai RY, Zhang Z, Mao XQ, Qiu HP, Jiang H, Wang YL, Sun GC. Pex14/17, a filamentous fungus-specific peroxin, is required for the import of peroxisomal matrix proteins and full virulence of Magnaporthe oryzae. Mol Plant Pathol, 2016, doi: 10.1111/mpp.12487. | [22] | Su H, Zhao Y, Yang P, Huang CX, Zhang KQ, Yang JK. Charastics of fungal peroxins. Microbiol China, 2014, 41(4): 725-733. | [22] | 苏浩, 赵勇, 杨攀, 黄成翔, 张克勤, 杨金奎. 真菌peroxins蛋白的性质和功能. 微生物学通报, 2014, 41(4): 725-733. | [23] | Opaliński Ł, Bartoszewska M, Fekken S, Liu HY, de Boer R, van der Klei IJ, Veenhuis M, Kiel JAKW. De novo peroxisome biogenesis in Penicillium chrysogenum is not dependent on the Pex11 family members or Pex16. PLoS One, 2012, 7(4): e35490. | [24] | Li XL, Baumgart E, Dong GX, Morrell JC, Jimenez- Sanchez G, Valle D, Smith KD, Gould SJ. PEX11α is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol, 2002, 22(23): 8226-8240. | [25] | Liu C, Wu B, Chen W, Li L, Li L, Han P, Zheng CQ, Liu GL. Expression of peroxisome proliferator-activated receptor-γ coactivator-1 in the liver of diabetic animals: experiment with mice. Natl Med J China, 2008, 88(26): 1863-1865. | [25] | 刘聪, 吴波, 陈威, 李莉, 李玲, 韩平, 郑长青, 刘国良. 糖尿病大鼠肝脏过氧化物增殖体受体γ辅激活子-1的表达及其意义. 中华医学杂志, 2008, 88(26): 1863-1865. | [26] | Kobayashi S, Tanaka A, Fujiki Y. Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. Exp Cell Res, 2007, 313(8): 1675-1686. | [27] | Thoms S, Erdmann R. Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation. FEBS J, 2005, 272(20): 5169-5181. | [28] | Vizeacoumar FJ, Torres-Guzman JC, Tam YYC, Aitchison JD, Rachubinski RA. YHR150w and YDR479c encode peroxisomal integral membrane proteins involved in the regulation of peroxisome number, size, and distribution in Saccharomyces cerevisiae. J Cell Biol, 2003, 161(2): 321-332. | [29] | Vizeacoumar FJ, Torres-Guzman JC, Bouard D, Aitchison JD, Rachubinski RA. Pex30p, Pex31p, and Pex32p form a family of peroxisomal integral membrane proteins regulating peroxisome size and number in. Saccharomyces cerevisiae. Mol Biol Cell, 2004, 15(2): 665-677. | [30] | Urban M, Bhargava T, Hamer JE. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J, 1999, 18(3): 512-521. | [31] | Oku M, Sakai Y. Pexophagy in yeasts. Biochim Biophys Acta, 2016, 1863(5): 992-998. | [32] | Komduur JA, Veenhuis M, Kiel JAKW. The Hansenula polymorpha PDD7 gene is essential for macropexophagy and microautophagy. FEMS Yeast Res, 2003, 3(1): 27-34. | [33] | Farré JC, Subramani S. Peroxisome turnover by micropexophagy: an autophagy-related process. Trends Cell Biol, 2004, 14(9): 515-523. | [34] | Meijer WH, van der Klei IJ, Veenhuis M, Kiel JAKW. ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy, 2007, 3(2): 106-116. | [35] | Soundararajan S, Jedd G, Li XL, Ramos-Pamploña M, Chua NH, Naqvi NI. Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell, 2004, 16(6): 1564-1574. | [36] | Farré JC, Manjithaya R, Mathewson RD, Subramani S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell, 2008, 14(3): 365-376. | [37] | Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita SI, Okuno T, Sakai Y, Takano Y. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus. Colletotrichum orbiculare. Plant Cell, 2009, 21(4): 1291-1304. | [38] | Nazarko TY, Polupanov AS, Manjithaya RR, Subramani S, Sibirny AA. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol Biol Cell, 2007, 18(1): 106-118. | [39] | Deng YZ, Qu ZW, Naqvi NI. The role of Snx41-based pexophagy in Magnaporthe development. PLoS One, 2013, 8(11): e79128. | [40] | Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol, 2003, 38(2): 143-158. | [41] | Patkar RN, Ramos-Pamploña M, Gupta AP, Fan Y, Naqvi NI. Mitochondrial β-oxidation regulates organellar integrity and is necessary for conidial germination and invasive growth in Magnaporthe oryzae. Mol Microbiol, 2012, 86(6): 1345-1363. | [42] | Swiegers JH, Dippenaar N, Pretorius IS, Bauer FF. Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast, 2001, 18(7): 585-595. | [43] | Bhambra GK, Wang ZY, Soanes DM, Wakley GE, Talbot NJ. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Mol Microbiol, 2006, 61(1): 46-60. | [44] | Wang ZY, Soanes DM, Kershaw MJ, Talbot NJ. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid β-oxidation during appressorium-mediated plant infection. Mol Plant Microbe Interact, 2007, 20(5): 475-491. | [45] | Hamilton AJ, Gomez BL. Melanins in fungal pathogens. J Med Microbiol, 2002, 51(3): 189-191. | [46] | Kogej T, Wheeler MH, Rižner TL, Gunde-Cimerman N. Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett, 2004, 232(2): 203-209. | [47] | Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall. BioEssays, 2006, 28(8): 799-808. | [48] | Ramos-Pamplona M, Naqvi NI. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Mol Microbiol, 2006, 61(1): 61-75. | [49] | Liu FF, Ng SK, Lu YF, Low W, Lai J, Jedd G. Making two organelles from one: woronin body biogenesis by peroxisomal protein sorting. J Cell Biol, 2008, 180(2): 325-339. | [50] | Jedd G, Chua NH. A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol, 2000, 2(4): 226-231. | [51] | Kimura A, Takano Y, Furusawa I, Okuno T. Peroxisomal metabolic function is required for appressorium-mediated plant infection by. Colletotrichum lagenarium. Plant Cell, 2001, 13(8): 1945-1957. | [52] | Deng SZ, Gu ZK, Yang N, Li L, Yue XF, Que YW, Sun GC, Wang ZY, Wang JY. Identification and characterization of the peroxin 1 gene MoPEX1 required for infection-related morphogenesis and pathogenicity in Magnaporthe oryzae. Sci Rep, 2016, 6: 36292. | [53] | Fujihara N, Sakaguchi A, Tanaka S, Fujii S, Tsuji G, Shiraishi T, O'connell R, Kubo Y. Peroxisome biogenesis factor PEX13 is required for appressorium-mediated plant infection by the anthracnose fungus Colletotrichum orbiculare. Mol Plant Microbe Interact, 2010, 23(4): 436-445. | [54] | Min K, Son H, Lee J, Choi GJ, Kim JC, Lee YW. Peroxisome function is required for virulence and survival of Fusarium graminearum. Mol Plant-Microbe Interact, 2012, 25(12): 1617-1627. | [55] | Imazaki A, Tanaka A, Harimoto Y, Yamamoto M, Akimitsu K, Park P, Tsuge T. Contribution of peroxisomes to secondary metabolism and pathogenicity in the fungal plant pathogen Alternaria alternata. Eukaryot Cell, 2010, 9(5): 682-694. | [56] | Zhong KL, Li X, Le XY, Kong XY, Zhang HF, Zheng XB, Wang P, Zhang ZG. MoDnm1 dynamin mediating peroxisomal and mitochondrial fission in complex with MoFis1 and MoMdv1 is important for development of functional appressorium in Magnaporthe oryzae. PLoS Path, 2016, 12(8): e1005823. | [57] | Chen XL, Shen M, Yang J, Xing YF, Chen D, Li ZG, Zhao WS, Zhang Y. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus. Mol Plant Pathol, 2017, 18(2): 222-237. | [58] | Klose J, Kronstad JW. The multifunctional β-Oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis. Eukaryot Cell, 2006, 5(12): 2047-2061. | [59] | Idnurm A, Howlett BJ. Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola(Brassica napus). Eukaryot Cell, 2002, 1(5): 719-724. | [60] | Asakura M, Okuno T, Takano Y. Multiple contributions of peroxisomal metabolic function to fungal pathogenicity in Colletotrichum lagenarium. Appl Environ Microbiol, 2006, 72(9): 6345-6354. | [61] | Solomon PS, Lee RC, Wilson TJG, Oliver RP. Pathogenicity of Stagonospora nodorum requires malate synthase. Mol Microbiol, 2004, 53(4): 1065-1073. |
|