[1] | Zhang J, Sun X, Qian Y, Maquat LE . Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA (New York, N.Y.), 1998,4(7):801-815. [DOI] | [2] | Hoffman MM, Birney E . Estimating the neutral rate of nucleotide substitution using introns. Mol Biol Evol, 2007,24(2):522-531. [DOI] | [3] | Chevalier BS, Stoddard BL . Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res, 2001,29(18):3757-3774. [DOI] | [4] | Zhang KH . The functions and applications of introns. Chin Anim Husb Vet Med, 2012,39(7):80-83. | [4] | 张开慧 . 内含子的功能及应用. 中国畜牧兽医, 2012,39(7):80-83. [DOI] | [5] | Zhao JX, Wang F, Xu ZR, Fan YM . The epigenetic effect on pre-mRNA alternative splicing. Hereditas(Beijing), 2014,36(3):248-255. | [5] | 赵金璇, 王芳, 徐峥嵘, 范怡梅 . 表观遗传调控pre- mRNA的选择性剪接. 遗传, 2014,36(3):248-255. [DOI] | [6] | Newman A . RNA splicing. Curr Biol, 1998,8(25):R903. [DOI] | [7] | Yeo G, Burge CB . Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol, 2004,11(2-3):377-394. [DOI] | [8] | Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, Gilad Y, Pritchard JK . RNA splicing is a primary link between genetic variation and disease. Science, 2016,352(6285):600-604. [DOI] | [9] | Hang J, Wan R, Yan C, Shi Y . Structural basis of pre-mRNA splicing. Science, 2015,349(6253):1191-1198. [DOI] | [10] | Hatton AR, Subramaniam V, Lopez AJ . Generation of alternative Ultrabithorax isoforms and stepwise removal of a large intron by resplicing at exon-exon junctions. Mol Cell, 1998,2(6):787-796. [DOI] | [11] | Marashi SA, Goodarzi H, Sadeghi M, Eslahchi C, Pezeshk H . Importance of RNA secondary structure information for yeast donor and acceptor splice site predictions by neural networks. Comput Biol Chem, 2006,30(1):50-57. [DOI] | [12] | Rautmann G, Matthes HW, Gait MJ, Breathnach R . Synthetic donor and acceptor splice sites function in an RNA polymerase B (II) transcription unit. Embo J, 1984,3(9):2021-2028. [DOI] | [13] | Burset M, Seledtsov IA, Solovyev VV . Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res, 2000,28(21):4364-4375. [DOI] | [14] | Schreier P, Aichinger C . Splicing as target for identifying new active substances. 2003. [DOI] | [15] | Duff MO, Olson S, Wei X, Garrett SC, Osman A, Bolisetty M, Plocik A, Celniker SE, Graveley BR . Genome-wide identification of zero nucleotide recursive splicing in drosophila. Nature, 2015,521(7552):376-379. [DOI] | [16] | Lopez PJ, Séraphin B . Uncoupling yeast intron recognition from transcription with recursive splicing. Embo Rep, 2000,1(4):334-339. [DOI] | [17] | Suzuki H, Kameyama T, Ohe K, Tsukahara T, Mayeda A . Nested introns in an intron: evidence of multi-step splicing in a large intron of the human dystrophin pre-mRNA. Febs Lett, 2013,587(6):555-561. [DOI] | [18] | Kelly S, Georgomanolis T, Zirkel A, Diermeier S ,O’Reilly D,Murphy S,L?ngst G,Cook PR,Papantonis A. Splicing of many human genes involves sites embedded within introns. Nucleic Acids Res, 2015,43(9):4721-4732. [DOI] | [19] | Trapnell C, Pachter L, Salzberg SL . TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009,25(9):1105-1111. [DOI] | [20] | Bradnam KR, Korf I . Longer first introns are a general property of eukaryotic gene structure. PLoS One, 2008,3(8):e3093. [DOI] | [21] | Shepard S, Mccreary M, Fedorov A . The peculiarities of large intron splicing in animals. PLoS One, 2009,4(11):e7853. [DOI] | [22] | Sibley CR, Emmett W, Blazquez L, Faro A, Haberman N, Briese M, Trabzuni D, Ryten M, Weale ME, Hardy J, Modic M, Curk T, Wilson SW, Plagnol V, Ule J . Recursive splicing in long vertebrate genes. Nature, 2015,521(7552):371. [DOI] | [23] | Pulyakhina I, Gazzoli I ,’tHoen PA, Verwey N, den Dunnen JT, Aartsma-Rus A, Laros JF . SplicePie: a novel analytical approach for the detection of alternative, non-sequential and recursive splicing. Nucleic Acids Res, 2015,43(22):11068. [DOI] | [24] | Burnette JM, Miyamoto-Sato E, Schaub MA, Conklin J, Lopez AJ . Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements. Genetics, 2005,170(2):661-674. [DOI] | [25] | Conklin JF, Goldman A, Lopez AJ . Stabilization and analysis of intron lariats in vivo. Methods, 2005,37(4):368-375. [DOI] | [26] | Pai AA, Paggi J, Adelman K, Burge CB . Numerous recursive sites contribute to accuracy of splicing of long introns in flies. PLoS Genet, 2018,14(8):e1007588. [DOI] | [27] | Taggart AJ, Desimone AM, Shih JS, Filloux ME, Fairbrother WG . Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo. Nat Struct Mol Biol, 2012,19(7):719-721. [DOI] | [28] | Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F . Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013,8(11):2281-2308. [DOI] | [29] | Emmett WA . Computational identification of regulatory features affecting splicing in the human brain. 2016. [DOI] | [30] | Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, Nikaido I . Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat Commun, 2018,9(1):619. [DOI] | [31] | Pai AA, Henriques Telmo, Paggi Joseph, Burkholder Adam, Adelman Karen, Burge Christopher B. . Intron length and recursive sites are major determinants of splicing efficiency in flies. , 2017, February 13. [DOI] | [32] | Srndic, Ismet . Experimental verification and functional exploration of intrasplicing. URN, 2016, urn:nbn:at:at-ubw: 1-10109. 80624. 509568-4. [DOI] | [33] | Irimia M, Blencowe BJ . Alternative splicing: decoding an expansive regulatory layer. Curr Opin Cell Biol, 2012,24(3):323-332. [DOI] | [34] | Carrillo OF, Bieberstein N, Neugebauer KM . Pause locally, splice globally. Trends Cell Biol, 2011,21(6):328-335. [DOI] | [35] | Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, Kaul R, Stamatoyannopoulos JA . Systematic localization of common disease-associated variation in regulatory DNA. Science, 2012,337(6099):1190-1195. [DOI] | [36] | Luo Q, Gao C, Wang HL, Zhou JH, Gao TZ . Effect of a novel splicing mutation(IVS2-2A→C) of SEDL gene on RNA processing. Hereditas(Beijing), 2005,27(4):544-548. | [36] | 罗强, 高超, 王怀立, 周建华, 高铁铮 . X-连锁迟发性脊椎骨骺发育不良基因剪接受体突变对mRNA加工的影响. 遗传, 2005,27(4):544-548. [DOI] | [37] | Savisaar R, Hurst LD . Estimating the prevalence of functional exonic splice regulatory information. Hum Genet, 2017,136(9):1059-1078. [DOI] | [38] | Editor T . Novel mechanism, called recursive splicing reveals how cells process large genes. Emerg Infect Dis, 2005. [DOI] | [39] | Zou YX, Gong YQ . Aberrant RNA splicing as the molecular basis of some pathogenic variants. Hereditas (Beijing), 2017,39(3):200-207. | [39] | 邹永新, 龚瑶琴 . 影响RNA剪接的基因变异. 遗传, 2017,39(3):200-207. [DOI] | [40] | Burke JE, Longhurst AD, Merkurjev D, Sales-Lee J, Rao B, Moresco J, Yates JR 3rd, Li JJ , Madhani HD. Spliceosome profiling visualizes operations of a dynamic RNP at nucleotide resolution. Cell, 2018, 173(4):1014-1030. e17. [DOI] | [41] | Donovan PD, Schr?der MS, Higgins DG, Butler G . Identification of non-coding RNAs in the candida parapsilosis species group. PLoS One, 2016,11(9):e0163235. [DOI] | [42] | Chabot B, Shkreta L . Defective control of pre-messenger RNA splicing in human disease. J Cell Biol, 2016,212(1):13-27. [DOI] | [43] | Georgomanolis T, Sofiadis K, Papantonis A . Cutting a long intron short: recursive splicing and its implications. Front Physiol, 2016,7:598. [DOI] | [44] | Chen YM . Regulation and function of non-exonic recursive splicing. 2011. [DOI] | [45] | Hollander D, Naftelberg S, Lev-Maor G, Kornblihtt AR, Ast G . How are short exons flanked by long introns defined and committed to splicing? Trends Genet, 2016,32(10):596-606. [DOI] | [46] | Liu YH, Wang L, Yu L . The principle and application of the single-molecule real-time sequencing technology. Hereditas(Beijing), 2015,37(3):259-268. | [46] | 柳延虎, 王璐, 于黎 . 单分子实时测序技术的原理与应用. 遗传, 2015,37(3):259-268. [DOI] |
|